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A B S T R A C T 

This study assessed potentially toxic elements (PTEs) contamination in 

Tummina's agricultural area and discussed the sources and spatial distribution 

of the targeted elements. The study results revealed that the median 

concentrations of arsenic, cadmium, chromium, lead, cobalt, nickel, copper, 

and zinc found in the soils align with the local geochemical baseline levels 

(LGB) of PTEs, indicating the lack of enrichment of these PTEs. Our 

comprehensive analysis of the soil pollution indices indicated that the study 

area is moderately enrichment with arsenic, cadmium, and lead. The 

ecological risk factor (Er) highlighted that Cd in the surficial soils poses a high 

risk (80 ≤ Er ＜ 160), whereas the other PTEs had a low Er. The investigation 

area had a median potential ecological risk index (RI) value of 69.45 in the 

surface soils, representing a moderate ecological risk. However, the P90 of the 

RI value was significantly higher, signifying a high ecological risk at 134.31. 

Cd was the primary contributor to RI, followed by As, Co, Pd, Ni, and Cu. 

PCA and HCA results demonstrated that Co, Cr, and Ni could originate from 

lithogenic sources. This study provides a confident understanding of the PTE 

levels and the need for further investigation in the study area. 
 

 لمكانيا هازيعتو و ها التلوث بالعناصر السامة في التربة السطحية الزراعية ومصدر 
   

الأطرشخليفة الصديف   
 

شت ية لمنطقة طمينة الزراعية ومناق( في التربة السطحPTEالى تقييم التلوث الناتج عن العناصر السامة ) هذه الدراسةتهدف 
والكروم  رنيخ والكادميومل من الز ككيزات  كشفت نتائج الدراسة أن قيم الوسيط لتر المصادر والتوزيع المكاني للعناصر المستهدفة.  

ية وكيميائية المحلساس الجيط الأوالرصاص والكوبالت والنيكل والنحاس والزنك الموجودة في التربة متقاربة مع مستويات خ
(LGBمما يدل على عدم حدوث اثراء لهذه العناصر في منطفة الدراسة. وأشار ،) تلوث التربة إلى لمؤشرات شاملالتحليل ال 

(  Erلخطر البيئي ) ار معامل ى اشاأن منطقة الدراسة تم اثرائها بشكل معتدل بالزرنيخ والكادميوم والرصاص. من ناحية اخر 
من اصر الأخرى كانت منخفضة (، بينما العن Er ＜ 160 ≥ 80الى أن الكادميوم في التربة السطحية يشكل خطرا كبيرا ) 

يشير إلى وجود  ا، مم69.45ان ك(  RIحيث معامل الخطر البيئي. في حين ان قيم الوسيط لمؤشر المخاطر البيئية المحتملة )
كثير خاطر البيئية المحتملة كانت أعلى ب(  لمؤشر المP90مخاطر بيئية بدرجة معتدلة, ومع ذلك ، فإن التركيزات المئوية التسعين )

لة، يليه ؤشر المخاطر البيئية المحتمالمساهم الرئيسي في قيمة م Cdوجود مخاطر بيئية عالية. وكان (، مما يشير إلى 134.31)
As  وCo  وPd  وNi  وCu( وأظهرت نتائج تحليل المكون الاساسي .PCAو الهرمي العنفود )( يHCA أن )

 بيعية.طيمكن أن تكون قد نشأة في التربة من مصادر  Niو  Crو  Coعناصر 
 

http://aif-doi.org/LJEEST/040102
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INTRODUCTION 

 

Human interference with the natural state of soil through 

chemicals or other alterations poses a grave threat to the 

ecosystem and the living species that depend on it. 

Intensive human activity has resulted in global 

agricultural soil pollution, impeding agriculture's 

sustainable development (Tilman et al., 2017). Trace 

metals, a category of PTEs, are one of the crucial causes 

responsible for soil pollution and environmental 

degradation. Several factors contribute to PTEs' 

prominence as the most significant pollutants in 

agricultural soils, including their widespread 

distribution, high toxicity, non-biodegradability, and 

bioavailability (Alengebawy et al., 2021; Alloway, 

2012; Srivastava et al., 2017). Soil plays a crucial role in 

the cycle of PTEs as it can function as both a sink and a 

source of these elements. (González Henao and  

Ghneim-Herrera, 2021). PTEs can originate from either 

anthropogenic or lithogenic sources. They can, 

therefore, be processed on-site and transferred over long 

distances due to their capability to be restricted by dust 

(Kumari, and  Mishra, 2021). These components are 

biologically toxic and highly environmentally persistent 

owing to their non-biodegradable inclination and quickly 

accumulate to toxic concentrations in the soil (Zhao et 

al., 2022). Toxic metals can build up in soil due to 

pesticides, herbicides, excessive fertilization, and 

improper agricultural waste disposal. This accumulation 

typically occurs in the upper layers of soil profiles. 

Toxic metal accumulation on the soil surface can 

severely influence crop quality and yield and the health 

of plants, animals, and humans. Toxic metals such as 

cadmium, lead, copper, and zinc contaminate 

agricultural soil, posing environmental and human 

health problems (Alengebawy et al., 2021). Certain trace 

metals, including Pb, Hg, As, and Cd, can lead to serious 

health issues such as kidney failure, liver damage, skin 

cancer, and severe osteoporosis (Bayrakli, 2021; Isley et 

al., 2022). On the other hand, Cu and Zn are crucial for 

properly functioning plants and animals, but excessive 

amounts can harm organisms (Okereafor et al., 2020). 

As a result, the pollution of farmland soils with PTEs 

has become a worldwide issue that affects human health 

and food security (Khan et al., 2021). Given the high 

time and economic cost of remediation of PTEs polluted 

soils, it is vital to conduct precautions to avoid further 

soil PTEs enrichment in farmland soils (Rajendran et al.,  

2022). Understanding the pollution levels, spatial 

patterns, and sources could instruct the prevention and 

reduction of new metal input. Previous studies utilized 

different indicators to estimate the contamination level 

caused by PTEs. Depending on the calculation method, 

these indicators can provide helpful information about 

the pollution level. The indicators mentioned are the 

geo-accumulation index (Igeo), contamination factor 

(CF), pollution load index (PLI, enrichment factor (EF), 

and potential ecological risk index (PERI) (Cai et al., 

2023; Hakanson, 1980; H. Liu et al., 2021; Müller, 

1969; Sinex and  Helz, 1981; Tholley et al., 2023; 

Tomlinson et al., 1980; Varol et al., 2021). 

The most common method for estimating pollution 

levels using the indicators above is to contrast the actual 

pollution concentration with comparable "natural 

benchmark" values. However, obtaining these "natural 

background" values is difficult precisely due to regional 

variation and significant anthropogenic influences (Tian 

et al., 2017). Another approach to assessing soil quality 

from pollution indices is utilizing the upper continental 

crust (UCC) chemical composition data derived from 

sedimentary, igneous, and metamorphic rocks as a direct 

benchmark, e.g.; (Kabata-Pendias and  Pendias, 2001; 

Rudnick, 2003; Taylor and  McLennan, 1995; Turekian 

and  Hans, 1961). Various regions have conducted soil 

studies and estimated the Earth's crust geochemical 

composition to provide the given values. These surveys 

typically cover minimal areas and consist of small 

sample size, according to Kabata-Pendias and Pendias in 

2001. There is disagreement about whether these values 

represent actual soils from vast and diverse regions, 

entire continents, or even all continents, as using UCC 

can only provide general information about the scale of 

an anthropogenic impact on the environment (Bern et 

al., 2019; Reimann and  de Caritat, 2017). Currently, 

there is a growing emphasis on the implementation of 

local geochemical baseline (LGB) strategies. In such 

cases, the LGB value may be used as an indicator of 

ambient background "actual background" for measuring 

present levels of environmental quality and for 

quantifying the future changes in soil concentrations of 

trace metals (Alizadeh-Kouskuie et al., 2020; Karim et 

al., 2015; Li et al., 2021; Tian et al., 2017; S. Wang et 

al., 2019; Zhang et al., 2020). Tommina, being a typical 

agricultural area with intensive farming practices, may 

have experienced resource depletion and environmental 

damage. Thus, farmland soils in this area deserve special 

attention concerning trace elements pollution. 

Researchers have yet to conduct any corresponding 

research to identify the pollution status, sources of 

pollution, and associated risks in the agricultural region 

of Tommina. Such knowledge is necessary to implement 

risk management practices for the farmland soils in the 

Tommina agricultural area. This study aimed to evaluate 

the extent of PTEs pollution in agricultural soil using 

collective and individual indicators, such as geo-

accumulation index (Igeo), contamination factor (CF), 

pollution load index (PLI), enrichment factor (EF), 

potential ecological risk index (RI), and to discuss the 

sources and spatial distribution of the PTEs targeted. 

These indicators are normalized based on the average 

local geochemical baseline (GBL) we characterized in 

our previous work (Alatresh, 2023).  

 

MATERIALS AND METHODS  

Study location soil sampling, and analysis 

In May 2022, we collected 52 surface soil samples from 

the Tummina agricultural area in the northwestern 
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region of the Libyan Sahel, which is situated southeast 

of Misrata city. The properties of the 52 samples have 

been evaluated in our previous work in terms of 

concentration, setting the most proper normalizing 

element for this area, and establishing the local 

geochemical baseline (LGB) for Co, Zn, Cr, Pb, Cu, Ni, 

Cd, and As using four techniques: box-whisker plot, 

reference metal normalization, iterative removal, and 

cumulative frequency curve. Alatresh's (2023) 

publication has comprehensive information regarding 

the study area, fieldwork, soil sampling, soil analysis, 

and the methods used to define the local geochemical 

baseline (LGB). 

 
Fig. 1. Location map of the soil sampling points in the 

Tummina agricultural area 

PTEs pollution assessment methods 

We applied the following contamination indices with 

different scopes to assess soil contamination status. 

The geo-accumulation index (Igeo) is the ultimate 

geochemical indicator for a specific metal (n). Müller 

invented the Igeo test in 1969 to assess the presence of 

heavy metal and metalloid elements in sediment by 

comparing current and pre-industrial levels. Since then, 

researchers worldwide have extensively employed Igeo 

to evaluate the pollution status of terrestrial, aquatic, and 

marine ecosystems (Birch, 2013; Gupta et al., 2014). It 

is a good index for qualifying soil enrichment but is not 

sensitive to minor contamination (Brady et al., 2015) 

𝐼𝑔𝑒𝑜 = 𝑙𝑜𝑔2
𝐶𝑛

1.5 × 𝐵𝑛
                (1) 

Where: Cn and Bn are the investigated concentration of 

PTE "n" and local geochemical baseline (LGB) value of 

PTE (n), respectively. The 1.5 factor is the background 

matrix correlate factor, which considers the natural 

fluctuation in the content of a chemical element in the 

environment with minimal human influence (Müller, 

1969). Figure 3 displays the various grades or classes for 

Igeo interpretation. Considering the conservative 

element concentration, the enrichment factor (EF) 

compares each concentration value with the background 

or reference level from the local or regional average 

composition. The formula for calculating the EF was 

developed by Chesselet in 1979 as follows:  

𝐸𝐹 =
𝐶 𝑠𝑎𝑚𝑝𝑙𝑒/𝐶 𝐶 (𝑠𝑎𝑚𝑝𝑙𝑒)

𝐶 𝐿𝐺𝐵/𝐶 C (LGB) 

   (2) 

Where: Csample is the element concentration in the 

sample, CC (sample) is the conservative element 

concentration in the sample, CLGB is the element 

concentration in the LGB, and CC (LGB) is the 

conservative element concentration in the LGB. Figure 3 

displays the interpretation categories of the EF.  

The contamination factor (CF) and pollution load index 

(PLI) were applied to evaluate the soil's element 

contamination. The CF is a sample's PTE (n) 

concentration ratio to the individual LGB value. Figures 

3 and 4 demonstrate the various classes of the CF and 

PLI. 

𝐶𝐹𝑛 =
𝐶𝑛

𝐵𝑛

                (3) 

The CF calculates the PLI value to evaluate the total 

degree of PTEs pollution. The PLI is calculated as the 

geometric mean of individual CF values and expressed 

by the following equation  (Hakanson, 1980): 

𝑃𝐿𝐼 = √𝐶𝐹1 × 𝐶𝐹2 × … … 𝐶𝐹𝑛
𝑛                 (4) 

Ecological risk assessment method 

The potential ecological risk factor (Er
i) represents the 

degree of ecological risk caused by a single metal in the 

soil using its contamination factor (Cf
i) (Hakanson, 

1980): 

𝐸𝑟
𝑖 = 𝑇𝑟

𝑖 × 𝐶𝑓
𝑖                  (5) 

Where: Tr
i is the toxic-response factor of metal (i): Cd = 

30, As = 10, Cr = 2, Cu, Ni, Co, Pb = 5, and Zn = 1. We 

used the potential ecological risk index (RI) to determine 

the degree of environmental risk caused by multi-metals 

in the soil (Hakanson, 1980): 

𝑅𝐼 = ∑ 𝐸𝑟
𝑖

𝑛

𝑖=1

= ∑ 𝑇𝑟
𝑖

𝑛

𝑖=1

× 𝐶𝑓
𝑖                    (6) 

Where: n is the number of metals (n = 8), and Er
i is the 

ecological risk factor of metal (i). Figures 3 and 4 

illustrate the Eri and RI interpretation categories, 

respectively, based on the works of Hakanson (1980) 

and (Ramdani et al., (2018). 

Statistical analyses 

We thoroughly analyzed the data, including the PTE 

contents, and calculated pollution and ecological risk 

indices. To ensure accuracy, we employed a range of 

techniques, including graphical (boxplots) and numerical 

(mean and median, 50th, 90th, skewness, and kurtosis) 

tools, as well as the formal Shapiro-Wilk test to test the 

normality of the distribution of PTE contents and 

calculated indices. We utilized nonparametric tests 

because these did not follow a normal distribution.  
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We utilized the robust SPSS 19.0 software by IBM, 

Microsoft Excel, and the highly efficient Origin Pro 

2021 by OriginLab Company for statistical analyses. 

Finally, for visualizing the spatial distribution of the 

targeted PTEs in agriculture soils, we performed spatial 

interpolations (IDW) using ArcGIS Map 10.4 software. 

 

 

RESULTS AND DISCUSSION  

PTEs in the study area 

Table 1 displays the descriptive statistical results of the 

total element contents of topsoil samples from the study 

area. In this study, the most abundant metals were Pb 

(18.5) > Cu (14.6) > Zn (13.7) > Co (12.1) > Ni (10.2) > 

Cr (9.3) > Cd (5.9) > As (6.4) in terms of the P90 

concentrations (mg/kg). This contribution may vary 

between the sampling sites since the levels of the eighth 

metals went between (0.9 to 14.5), (2.7 to 18.8), (1.5 to 

13.8), (1.8 to 22.5), (1.7 to 18.1), (2.0 to 13.2), (0.1 to 

7.7), (0.3 to 11.0) mg/kg for Co, Zn, Cr, Pb, Cu, Ni, Cd, 

and As, respectively. It is common practice in several 

fields to measure distribution variability using the 

coefficient of variation. Guo et al. (2012) and Niu et al. 

(2019) have suggested using the classical coefficient of 

variation (CV) to study the elements' distribution 

variability. In contrast to the relatively high CV of 

metals impacted by anthropogenic sources, they evaluate 

comparatively low CV values for metals dominated by 

natural sources. These authors divide the degree of 

variability into four categories: low variability (CV < 

20%), moderate variability 20% ≤ CV ≤ 50%, high 

variability CV > 50%, and very high variability (CV > 

100%). In the present study, according to this 

classification, Zn (41%), Ni (44%), and Cu (47%) show 

moderate variability, while Pb (53%), Cr (55%), Co 

(57%) Cd (80%) and As (116%) show very high 

variability. The results above indicate that the topsoil's 

distribution of (Pb, Cr, Co, Cd, and As) is uneven and 

profoundly influenced by human activities. On the 

contrary, the CV value of (Zn, Ni, and Cu) was smaller, 

the value of which indicates that they are less affected 

by human activities. The variability in the PTEs 

concentration may be due to human activities, growing 

vegetable crops, and different agricultural practices. The 

content of some PTEs, such as Cd and As in farmlands, 

may be attributed to fertilizer and agrochemical 

applications (Ahmadi et al., 2019; Alengebawy et al., 

2021; Weissengruber et al., 2018). Long-term 

application of fertilizers, fungicides, and metal-

containing pesticides can accumulate PTEs in 

agricultural soils (Alengebawy et al., 2021). The above 

results show that human activities have significantly 

impacted the distribution of Pb, Cr, Co, Cd, and Arsenic 

in the topsoil, which is not uniform. However, the CV 

value is lower for Zn, Ni, and Cu, indicating that human 

activities have a less significant effect on these elements. 

Skewness is a fundamental statistical measure that 

accurately portrays the symmetry of a distribution. It is 

worth noting that Co, Zn, Pb, Cu, Ni, and Cd exhibited 

the right positive skewness values that were less than 

one. This result implies that most data points for these 

PTEs clustered towards the lower end of the scale, with 

a few extreme values towards the higher end. In 

contrast, Cr and As exhibited skewness values exceeding 

one, signifying that their data points were significantly 

dispersed and had a greater incidence of extreme values 

on the upper end of the spectrum (Table 1 and Fig. 2). 

The absolute kurtosis values of Cr and As are primarily 

positive; Cr tends to reach 1 (0.9), whereas arsenic's 

kurtosis value is higher than 1, specifically 5.6. Cr and 

arsenic have positive kurtosis values, indicating more 

extreme values in their distribution. In contrast, other 

elements Co, Zn, Pb, Cu, and Cd, have negative kurtosis 

values, indicating fewer extreme values. The platykurtic 

distribution of nickel kurtosis is evident in its zero value. 

This distribution signifies a flatter shape, with fewer 

values in its shorter tails than the normal distribution.  

In Figure 2, the boxplots displaying PTEs contents 

indicate unusually high values (represented by red stars), 

especially for Cr and As.  

Table 1. Descriptive statistics of metals concentration (mg/kg) and average local soil geochemical baseline (LGB) (n = 52). 

Element Co Zn Cr Pb Cu Ni Cd As 

Mean 6.8 8.9 5.2 10.3 8.7 6.2 2.8 2.1 

Standard Deviation 3.9 3.7 2.9 5.5 4.1 2.7 2.2 2.4 

Coefficient of Variation 57% 41% 55% 53% 47% 44% 80% 116% 

Minimum 0.9 2.7 1.5 1.8 1.7 2.0 0.1 0.3 

Median 6.2 8.8 4.5 9.8 8.7 6.0 2.1 1.2 

Maximum 14.5 18.8 13.8 22.5 18.1 13.2 7.7 11.0 

P90 (90th percentile) 12.1 13.7 9.3 18.5 14.6 10.2 5.9 6.4 

Skewness 0.3 0.4 1.2 0.4 0.5 0.7 0.7 2.5 

Kurtosis -0.9 -0.4 0.9 -0.4 -0.5 0.0 -0.7 5.6 

Local geochemical baseline (LGB) 6.61 8.53 4.81 9.50 8.73 5.59 1.98 1.74 
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These outliers may result from anthropogenic activities 

such as farming, leading to anthropogenic contamination 

due to varying farming practices, including using 

fertilizers and pesticides. According to research by L. 

Wang et al. (2022), using manure as fertilizer can 

significantly increase the soil's PTEs, like Cu, As, Cd, 

Cr,  and Zn levels. Researchers have found that 

inorganic fertilizers contain higher levels of PTEs like 

arsenic, cadmium, and lead than other fertilizers 

(Gimeno-García et al., 1996; Mortvedt, 1995). The study 

by L. Wang et al. (2022) also found that using inorganic 

fertilizers led to higher Pb concentrations than using a 

combination of manure and inorganic fertilizers. 

However, studies have proven that utilizing organic 

fertilizers like compost and farmyard manure can 

effectively decrease the presence of PTEs in the soil. 

Singh et al. conducted a study in 2010 which highlighted 

this information. 

PTEs pollution status evaluation 

Fig. 3, 4, and Table 2 display the various indices and 

factors utilized to assess the current state of PTEs in the 

Tommina agricultural area. The EF median values of 

Co, Zn, Cr, Pb, Cu, Ni, As, and Cd indicated low 

enrichment (EF < 2).  

 
Fig. 2. Boxplots of PTEs concentrations in topsoil within 

the research area (mg/kg-1) (n = 52). 

The EF sequence of the P90 values were As (3.7) > Cd 

(3.0) > Pb (2.0) > Cr (1.9) > Co (1.8) = Ni (1.8) > Cu 

(1.7) > Zn (1.6), representing that As, Cd and Pb showed 

moderate enrichment (2 ≤ EF < 5), whereas Ni, Co, Cu, 

Table 2. Igeo, Cf,  EF,  Er,  RI, and  PLI values of PTEs in topsoil samples from the study area (n = 52). 

    Co Zn Cr Pb Cu Ni Cd As 

 Geo-

accumulation 

index (Igeo)   

Mean -0.8 -0.7 -0.7 -0.7 -0.8 -0.6 -0.7 -0.9 

Minimum -3.5 -2.2 -2.2 -3.0 -2.9 -2.0 -4.7 -3.0 

Median -0.7 -0.5 -0.7 -0.5 -0.6 -0.5 -0.5 -1.2 

Maximum 0.6 0.6 0.9 0.7 0.5 0.7 1.4 2.1 

P90 0.3 0.1 0.4 0.4 0.2 0.3 1.0 1.3 

Contamination 

factor (Cf) 

Mean 1.0 1.0 1.1 1.1 1.0 1.1 1.4 1.2 

Minimum 0.1 0.3 0.3 0.2 0.2 0.4 0.1 0.2 

Median 0.9 1.0 0.9 1.0 1.0 1.1 1.1 0.7 

Maximum 2.2 2.2 2.9 2.4 2.1 2.4 3.9 6.3 

P90 1.8 1.6 1.9 2.0 1.7 1.8 3.0 3.7 

Enrichment 

factor (EF)  

Mean 1.0 1.0 1.1 1.1 1.0 1.1 1.4 1.2 

Minimum 0.1 0.3 0.3 0.2 0.2 0.4 0.1 0.2 

Median 0.9 1.0 0.9 1.0 1.0 1.1 1.1 0.7 

Maximum 2.2 2.2 2.9 2.4 2.1 2.4 3.9 6.3 

 
P0 1.8 1.6 1.9 2.0 1.7 1.8 3.0 3.7 

Ecological risk 

factors (Er)  

Mean 5.2 1.0 2.2 5.4 5.0 5.6 41.8 12.1 

Minimum 0.7 0.3 0.6 0.9 1.0 1.8 1.7 1.9 

Median 4.7 1.0 1.9 5.1 5.0 5.4 32.0 6.8 

Maximum 11.0 2.2 5.8 11.8 10.4 11.8 117.3 63.1 

P90 9.1 1.6 3.9 9.8 8.4 9.2 89.3 36.9 

  Mean Minimum Median Maximum P90 
    

Ecological Risk 

Index (RI)  
78.3 14.9 63.5 212.2 155.5 

    

Pollution load 

index (PLI) 
1.0 0.3 0.9 2.1 1.5         
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and Zn had the "P90" value of low enrichment (EF < 2) 

(Table 2).  

 
Fig. 3 Boxplots of PTEs contamination factor (Cf), enrichment 

factor (EF), ecological risk factors (Er), and geo-

accumulation index (Igeo) in topsoil samples from the 

study area (n = 52). 

 

The Igeo median values of Co, Zn, Cr, Pb, Cu, Ni, As, 

and Cd were negative (Igeo ≤ 0), signifying that the 

surficial soils of the investigation area were "unpolluted" 

with all PTEs. The Igeo sequence of the P90 values were 

As (1.3) > Cd (1.0) > Cr (0.4) = Pb (0.4) > Co = Ni (0.3) 

> Cu (0.2) > Zn (0.1). These results show that the 

surface soil samples of the study area are slightly 

polluted (0 ＜ Igeo  ≤ 1) with (Cd, Cr, Pb, Co, Ni, Cu, 

and Zn) and moderately polluted 1 ＜ Igeo  ≤2), with 

As. The study found that EF and Cf consistently 

produced similar results. Among the various PTEs 

studied, As, Co and Cr had median Cf values ranging 

from 0.7 to 0.9, indicating low contamination (CF < 1). 

The other PTEs had Cf values higher than one, denoting 

moderate contamination (1 < CF < 3). The PTEs were 

ranked based on their P90 values for Cf, with As having 

the highest value at 3.7, followed by Cd at 3.0, Pb at 2.0, 

Cr at 1.9, Ni and Co tied at 1.8, Cu at 1.7, and Zn at 1.6. 

Suggesting that Co, Zn, Cr, Pb, Cu, and Ni had low 

contamination (CF < 1) in the soil, while As and Cd 

showed moderate contamination (1 < CF < 3) (Fig. 3 

and Table 2). The median and P90 values of the soil 

pollution load index (PLI) at each sampling point were 

0.9 and 1.5, respectively. While the median values 

suggest no contamination (PLI < 1) in the soils of the 

research area, the P90 values indicate otherwise, 

revealing that the soil is polluted (PLI > 1) (Table 3 and 

Fig. 3). Our thorough analysis of the soil pollution 

indices shows that contamination in the study area is 

associated with moderate enrichment of As, Cd, and Pb. 

We must promptly tackle this problem and guarantee the 

safety of the environment and the people in the vicinity. 

Multiple studies have shown that agrochemicals 

significantly increase certain elements known as PTEs in 

agricultural soils. These studies include Dayani and  

Mohammadi (2010), Keshavarzi and  Kumar (2018), 

and Varol et al. (2020). Additionally, using 

contaminated water for irrigation can also contribute to 

the presence of these elements in the soil. Studies by 

Cecchi et al. (2008), Mekki and  Sayadi (2017), and 

Woldetsadik et al. (2017) support this claim. In the study 

region, soil contamination with arsenic, Cd, and Cr may 

be due to using fertilizers, pesticides, and contaminated 

irrigation water.  

Ecological risk evaluation 

Hakanson's procedure for assessing soil contamination 

using the potential ecological risk index (RI) considers 

various metals' contents and potentially hazardous 

consequences. Table 2, Fig. 3, and Fig. 4 demonstrate 

the results of the ecological risk factors (Er) and the 

potential ecological risk index (RI) of eight PTEs in the 

topsoil of the study area. The Er of (Co, Zn, Cr, Pb, Cu, 

Ni, and As) were < 40, showing that these metals posed 

a low Er. In contrast, Cd modelled a moderate ecological 

threat (40 ≤ Er ＜ 80) (Table 2 and Fig.3).  
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Fig. 4 Boxplots of PTEs ecological risk index (RI) and 

pollution load index (PLI) in topsoil samples from 

the study area (n = 52). 

The overall labeling of Er levels within the research 

area's topsoil, however, varied in the following order: 

Cd > As > Ni > Pb > Co > Cu > Cr > Zn. The order of 

the P90 Er values were Cd (89.3) > As (36.9) > Pb (9.8) 

> Ni (9.2) > Co (9.1) > Cu (8.4) > Cr (3.9) > Zn (1.6), 

indicating that Cd in the surficial soils had a high Er (80 

≤ Er ＜ 160). In contrast, the other metals had low Er 

(Er＜40). In the same vein, studies conducted by 

Yuanan et al. (2020) and Varol et al. (2021) found that 

Cd was the metal with the highest Er level in agricultural 

soils in Handan (China) and Malatya (Turkey), 

respectively. Kumar et al. (2019) reported the highest Er 

value for Cd, tailed by Ni and Arsenic, in agricultural 

soils in India due to chemical fertilizers and pesticides. 

The median RI value was 69.45, indicating "moderate 

ecological risk," while the P90 of RI value was 134.31, 

signifying "high ecological risk" in the surface soils of 

the investigation area. Contrary to our RI results, very 

high RI values were reported for agricultural soils in 

China (Wu et al., 2020) and India (Kumar et al., 2019). 
The most significant contributor to RI is Cd, followed by 

As, Co, Pd, Ni, and Cu, as shown in Figure 5. These six 

elements accounted for 53%, 16%, 7%, 7%, 7%, and 6% 

of the total ecological risk values. Other elements, such 

as Cr and Zn, had relatively lower contribution rates to 

RI, with 3% and 1%, respectively. The contribution rate 

of PTEs to RI was consistently related to their toxicity 

response factors, not just their contents. Among the 

elements, Cd and As posed the most significant 

ecological risks (Er) and should be closely monitored. 

Cd had a higher potential ecological risk (41.85) than the 

other metals. The high toxicity coefficient and low local 

GBL identify Cd as a critical factor for potential 

ecological hazards. 

 
Figure 5. Contribution of PTEs to the Ecological risk index 

(RI. 

Sources and distribution pattern of PTEs 

Pearson correlation study 

Table 3 displays the outcome of the analysis of 

relationship coefficients for the PTEs concentrations in 

the study province at P < 0.05 and P < 0.01. Correlation 

analysis is an effective tool for identifying 

commonalities between various pathways or sources of 

environmental pollutants. Numerous studies, such as 

Dong et al. (2019) and Egbueri et al. (2022), have 

conducted thorough analyses of the relationships 

between the factors under investigation, utilizing 

Pearson's correlation matrix to ascertain the degree of 

similarity. Egbueri et al. (2022) divided correlation 

coefficients into strong (r > 0.7), moderate (0.5 < r < 

0.7), and weak (r < 0.5) relations. However, from the 

correlation analysis results, the following parameter 

pairs were observed to have a positive significant strong 

correlation (P < 0.01) between Cd - Zn (0.92), Ni - Cr 

(0.82), As - Cd (0.79), As - Zn (0.79). Furthermore, 

Table 3 shows that there is a significant positive 

correlation (P < 0.01) between Cd - Cu (0.60), Cu - Zn 

(0.60), Cu - Pb (0.59), Pd - Zn (0.58), Cd - Pb (0.53), 

Co-Ni (0.33, P 0.05), and Co - Cr (037), As - Pb (0.37), 

and As - Cu (0.49)7, while As and Pb have a coefficient 

of 0.37 and As and Cu have a coefficient of 0.49. 

Additionally, there were adverse relations between Cd / 

Co, Ni / Pb, Pb / Co, Pb / Cr, / Zn / Co. The negative 

links imply that these metals' input is not governed by a 

single factor but rather by combining geochemical 

support phases and their mixed association (H. Chen et 

al., 2014; Yang et al., 2018). However, the strong to 
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moderate correlation of Cd, Cu, Zn, Pb, Co, Ni, As, and 

Cr elemental pairings indicate a probable origin from 

similar sources, mostly geogenic, and a minor 

contribution of anthropogenic activities (Huang et al., 

2020). Nevertheless, more than a single relationship 

analysis is required to fully comprehend the source of 

PTEs.  

 

Principal component analysis. 

Principal component analysis (PCA) is a widely used 

tool among researchers for identifying the sources of 

metals in soils - whether they are natural or 

anthropogenic, and to determine the unique 

characteristics of their constituent elements (X. Chen et 

al., 2012; dos Santos et al., 2017). Moreover, PCA can 

effectively eliminate the spatial diversity of sample 

variables and facilitate extracting information among 

sample variables. The significant PCs were selected 

based on the Kaiser criterion (eigenvalue > 1). The 

component loading plot revealed that two groups could 

categorize the examined metals' composition, 

representing 63.2% of the total variation (Fig. 6a and 

Table 4). The first component (PC1) explained 40.0% of 

the data variance and demonstrated a substantial positive 

load for Zn (0.94), Cd (0.93), As (0.83), Cu (0.77), and 

Pb (0.70). PC2 explained 32.20 % of the overall 

variation and demonstrated a high positive loading of Co 

(0.62), Cr (0.92), and Ni (0.90). These results strongly 

endorse the hypothesis that the PTEs in each component 

have a similar source since it has high positive loadings. 

In agricultural soils, cobalt, chromium, and nickel 

sources can be natural and anthropogenic (Aliu et al., 

2021). Therefore, PC2 could likely illustrate the 

lithogenic component of Co, Cr, and Ni. In comparison, 

the highly favorable loading in PC1 could signify 

anthropogenic pollution from agricultural activity, 

atmospheric deposition, fertilizers, and manure 

application (Adimalla, 2020; H. Chen et al., 2015). 

Widespread and continual use of agrochemicals 

containing Cu, As, Zn, and Pb to improve yield and 

quality may result in As, Cu, and Pb buildup in soils 

(Acosta et al., 2011). According to Shomar (2006) and 

Pierart et al. (2015), inappropriate use of pesticides or 

herbicides may enhance Zn and Cd in topsoil. In this 

regard, the range of Cd contents in phosphate fertilizers 

in North America and China is 16-45 and 0.5-3.2 mg/kg, 

respectively, while the range of Zinc values in fertilizers 

is 4.87-348.2 mg/kg (Hu et al., 2016; K. Zhao et al., 

2010). The remaining PTEs loading is relatively modest, 

possibly due to an unusual origin from geogenic and 

anthropogenic origin. 

 

Table 3. Pearson's correlation matrix for PTEs in the surface soils of the Tommina agricultural area. *Indicates 

significance at 0.05 probability level and **indicates significance at 0.01 probability level (n = 52). 

Element Co Zn Cr Pb Cu Ni Cd 

Co 
       

Zn -0.12 
      

Cr 0.38** -0.02 
     

Pb -0.1 0.58** -0.08 
    

Cu 0.05 0.60** 0.11 0.59** 
   

Ni 0.33* 0.11 0.82** -0.02 0.16 
  

Cd -0.02 0.92** 0.08 0.53** 0.60** 0.2 
 

As -0.09 0.79** -0.06 0.37** 0.49** 0 0.79** 
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Figure 6 shows the principal component loading plot (a) and 

Cluster analysis plot (b) of PTEs found in soils in the 

Tommina agricultural district. 

 

 

Figure 7 Spatial distributions of PTEs in soils from the 

Tommina agricultural region. 

Hierarchical cluster analysis 

The HCA (Fig. 6b) made it possible to identify two 

separate clusters. Cluster (C1) consists of Zn, Cd, As, 

Pb, and Cu, while set (C2) contains Cr. Ni, and Co. The 

conclusions of the PCA and the results of the HCA are 

consistent. 

Spatial distribution 

Spatial distribution mapping is crucial in pinpointing 

safe and unsafe areas and establishing fundamental data 

for preventing and managing soil contamination. Figure 

7 shows the geographic distribution maps of Pb, Co, Cr, 

Cu, Zn, Ni, As, and Cd in surface agricultural soils in 

the present research location. The distribution patterns of 

Co, Zn, Pb, Cu, Ni, and Cd content are generally 

identical, with the only difference being the 

concentration and the transit area. The middle of the 

eastern map has relatively high concentrations, whereas 

the center of the western map has relatively low 

concentrations. There are also significant concentrations 

in the northern half of the region. The distribution 

pattern of Cr reveals that two locations have a higher 

concentration than others, after which the spread 

becomes less widespread. The practice of As's 

distribution seems to have a higher concentration in the 

east and west parts of the study area at three distinct 

places, although this concentration does not appear to be 

dominant. Those with higher Cd, however, were mainly 

distributed at the eastern and western corners (Fig. 7). 

PTE levels in the soils frequently differed significantly 

from site to site. Co, Cu, Cr, Ni, Pb, As, Zn, and Cd 

levels in the surficial soil samples had coefficients of 

variation (CV) of more than 40%, with Zn (41%), Ni 

(44%), Cu (47%), (53%), Cr (55%), Co (57%) Cd 

(80%), and As (116%) having the highest. The 

coefficients of variation (CV) suggest that the 

anthropogenic activities have significantly influenced 

the geochemical properties of Tummina's surficial soils 

(Table 1). The rate of sampling points with the content 

of PTEs exceeding the LGB was in the decreasing order 

of Cd (55.8%) > Zn (53.8%) > Cu (51.9%) > Ni (50.0%) 

> Pb (48.1%) > Co (46.2%) > Cr (42.3%) >As (25.0%). 

 
 

CONCLUSION  
 

The study reveals that the median concentrations of 

arsenic, cadmium, chromium, lead, cobalt, nickel, 

copper, and zinc found in the soils align with the local 

geochemical baseline levels of PTEs, indicating the lack 

of enrichment of these PTEs. Furthermore, the median 

PLI values indicate no contamination in the study 

region's soils, except those found in soils associated with 

P90 PLI (1.5). The study also shows that based on the 

P90 values of PTEs, Cd poses the highest potential 

ecological risk (Er = 89.3), whereas the other PTEs have 

a low Er. The RI value was fair at the median and high 

at the P90, with cadmium contributing the most to the 

overall ecological risk values. Thus, cadmium and 

arsenic should be the priority focus for risk management 

in the study area. PCA and HCA results demonstrate that 

Co, Cr, and Ni could originate from lithogenic sources. 
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In contrast, arsenic, cadmium, lead, copper, and zinc 

could come from both natural origins and anthropogenic 

sources such as agricultural activity, atmospheric 

deposition, fertilizers, and manure application. These 

findings suggest that anthropogenic activities 

significantly impact the geochemical characteristics of 

Tummina's surficial soils, resulting in significant 

variance in PTEs levels throughout sites. In conclusion, 

the study area requires additional investigations to assess 

the potential health risks of PTE contamination. The soil 

has high concentrations of cadmium and arsenic, which 

is concerning and requires attention to mitigate potential 

risks. Overall, the study provides a confident 

understanding of the PTEs levels and the need for 

further investigation in the study area. 
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