Simulation of Flood Paths of Wadi Al-Megenin Using HEC-RAS Software
DOI:
https://doi.org/10.63359/1rabf579Keywords:
Wadi Al-Megenin, dam collapse, flood simulation, HEC-RASAbstract
Floods resulting from dam collapses are among the most dangerous natural disasters that threaten lives and infrastructure, especially in urban areas located along the paths and estuaries of valleys. This study aims to simulate the expected flooding in a scenario where the Wadi Al-Megenin Dam, south of the Libyan capital, Tripoli, collapses. This study assumes that its storage reservoir is filled to 60 million cubic meters. The study used the HEC-RAS program to estimate the extent of the resulting risks. The results showed that the flood wave resulting from the dam collapse could reach vital areas in the capital, such as Tripoli International Airport and Qasr Bin Ghashir, in less than 24 hours, with flood levels rising to more than 11 meters and a flow velocity exceeding 2 m/s. It also showed that floodwaters would continue to advance north, submerging large parts of the city, reaching the coast within three days, affected by the slope of the land and urban obstructions. The results, according to the proposed simulation scenario, indicated that approximately 25-30% of the capital's neighborhoods would be submerged. The study provides accurate simulation data that supports risk management efforts and helps decision-makers develop effective preventive plans to reduce potential losses.
References
الادارة العامة للسدود ومياه الوديان، 1978، كتيب عن سد وادي المجينين، قسم التنسيق والتوعية المائية، طرابلس، ليبيا.
أسامة، علي (2023). سدود ليبيا (إهمال رسمي يهدد حياة الملايين من السكان. صحيفة العربي الجديد. الصادرة بتاريخ 27 – سبتمبر، لندن. الموقع الالكتروني للمجلة: https://www.alaraby.co.uk/society.
الحداد، عبد العاطي أحمد محمد والزردمي، ريم علي محمود. 2024. تحديد وتقييم المناطق المعرضة لخطر الفيضانات بحوض وادي المجينين بشمالي غرب ليبيا. المؤتمر العلمي الأول حول أساليب الوقاية والمواجهة لأخطار السيول في المناطق الجافة وشيه الجافة. كلية قسم الجغرافيا / كلية الآداب والعلوم الأبيار/ جامعة بنغازي، الفترة من 20-22 فبراير 2024م. الصفحات 181-208. https://uob.edu.ly/ar/home
خماج، أحمد إبراهيم والمنتصر، جمعة المحظي. 2015. مؤشرات استهلاك المياه لبعض المحاصيل في شمال غرب ليبيا. المجلة الليبية للعلوم الزراعية. المجلد (20) العددان (1-2): 84-95. http://www.ljagric.uot.edu.ly
مركز البحوث الصناعية، 1993، خارطة جيولوجية لمنطقة الدراسة لوحة طرابلس، ليبيا.
Abdelkareem, M. (2017). Targeting flash flood potential areas using remotely sensed data and GIS techniques.Nat.Hazards.85,19-37. https://doi.org/10.1007/s11069-016-2556-x.
Al-Gurairy, A. S. Y. (2024). Modeling Flood Propagation and Risk Mapping Using HEC-RAS, Simulation of Wadi Kaam Dam Collapse in Libya. Midad Al-Adab Refereed Journal, 1(geography Department Conference). [G.S]. http://dx.doi.org/10.1108/WJE-10-2022-0405
Al-Gurairy, A. S. Y., & Al-Shammary, A. A. S. (2023). Stages of the historical geomorphology evolution of the meander of Al-Shatt Al-Aama and its Ox Bow lake south of Al-Azizia-Iraq. for humanities sciences al qadisiya, 26(3). [Google Scholar] http://dx.doi.org/10.5281/zenodo.10103302.
Al-Gurairy, A. S. Y., & Al-Shammary, A. A. S. (2023). Stages of the historical geomorphology evolution of the meander of Al-Shatt Al-Aama and its Ox-Bow Lake south of Al-Azizia-Iraq. for humanities sciences al qadisiya, 26(3). (In Arabic) [Google Scholar]. http://dx.doi.org/10.5281/zenodo.10103302
Al-Gurairy, A. S. Y., & Al-Zubaidi, A. H. A. (2023). Climate Change and Its Impact on The Expansion of the Phenomenon of Sand Dunes and Desertification of Agricultural Lands in Iraq for The Period 1984-2022 (Governorates of Al-Qadisiyah, Al-Muthanna, and Dhi Qar). [G.S] http://dx.doi.org/10.52865/YJPI8019.
Al-Gurairy, A., Al-Jubory, M. S., Al-Ansari, N., Muhammad Awadh, S., Al-Zubaidi, A. H., Al-Sadun, M. T., & Al-Ghurairy, R. M. (2024). Tectonic activation and the risk of Ilisu Dam collapse to Iraq through modelling and simulation using HEC-RAS. Applied Water Science, 14(11), 240. [G.S] https://doi.org/10.1007/s13201-024-02299-9
Costa, J. E., & Schuster, R. L. (1988). The formation and failure of natural dams. Geological society of America bulletin, 100(7), 1054-1068.[Google Scholar] https://doi.org/10.1130/0016-7606(1988)100%3C1054:TFAFON%3E2.3.CO;2
CRED, “2022 Disaster in Numbers,” 2023, [Online]. Available: https://cred.be/sites/default/files/2022_EMDAT_report.pdf.
Dincergok, T. (2007, March). The role of dam safety in dam-break induced flood management. In Proceedings of International Congress on River Basin Management” (pp. 682-697). [Google Scholar].
Eldeeb, H., Mowafy, M. H., Salem, M. N., & Ibrahim, A. (2023). Flood propagation modeling: Case study the Grand Ethiopian Renaissance dam failure. Alexandria Engineering Journal, 71, 227-237. [Google Scholar] https://doi.org/10.1016/j.aej.2023.03.054
Fernandes GW, Goulart FF, Ranieri BD, Coelho MS, Dales K, Boesche N, Soares-Filho B (2016) Deep into the mud: ecological and socio-economic impacts of the dam breach in Mariana Brazil. Natureza & Conservação 14(2):35–45. [G.S] https://doi.org/10.1016/j.ncon.2016.10.003
Foster, M., Fell, R., & Spannagle, M. (2000). The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal, 37(5), 1000-1024. [Google Scholar] https://doi.org/10.1139/t00-030
Haltas, I., Tayfur, G., & Elci, S. (2016). Two-dimensional numerical modelling of flood wave propagation in an urban area due to Ürkmez dam-break, İzmir, Turkey. Natural Hazards, 81, 2103-2119. [Google Scholar] https://doi.org/10.1007/s11069-016-2175-6
Ibrahim, N. F., Zardari, N. H., Shirazi, S. M., Haniffah, M. R. B. M., Talib, S. M., Yusop, Z., & Yusoff, S. M. A. B. M. (2017). Identification of vulnerable areas to floods in Kelantan River sub-basins by using flood vulnerability index. GEOMATE Journal, 12(29), 107-114. [Google Scholar] http://dx.doi.org/10.21660/2017.29.11110
Mohamed, M. J., Karim, I. R., Fattah, M. Y., & Al-Ansari, N. (2023). Modelling Flood Wave Propagation as a Result of Dam Piping Failure Using 2D-HEC-RAS. Civil Engineering Journal (Iran), 9(10), 2503-2515. [Google Scholar] https://doi.org/10.28991/CEJ-2023-09-10-010
Primo, P. P. B., Antunes, M. N., Arias, A. R. L., Oliveira, A. E., & Siqueira, C. E. (2021). Mining dam failures in Brazil: comparing legal post-disaster decisions. International journal of environmental research and public health, 18(21), 11346.[Google Scholar] https://doi.org/10.3390/ijerph182111346
Romali, N. S., Yusop, Z., & Ismail, A. Z. (2018). Application of HEC-RAS and Arc GIS for floodplain mapping in Segamat town, Malaysia. GEOMATE Journal, 15(47), 7-13. [Google Scholar] http://dx.doi.org/10.21660/2018.47.3656
Saaty TL, Saaty TL. (2013). The modern science of multicriteria decision making and its practical applications: The AHP/ANP approach The modern science of multicriteria decision making and its practical applications: The AHP/ANP approach. Opera tions Res. https://doi.org/10.1287/opre.2013.1197.
Sousa, Ahmad (1965). Baghdad Floods in History, Part Two, Al-Adib Press - Baghdad, Iraq, issue 374-385. (In Arabic).
Wingfield T, Macdonald N, Peters K, Spees J, Potter K (2019) Natural Flood Management: Beyond the evidence debate. Area. https://doi.org/10.1111/area.12535.
Yi, X. (2011). A dam break analysis using HEC-RAS. Journal of Water Resource and Protection, 2011. [Google Scholar] http://www.scirp.org/journal/PaperInformation.aspx?PaperID=5707
Zhong, Q. M., Chen, S. S., Deng, Z., & Mei, S. A. (2019). Prediction of overtopping-induced breach process of cohesive dams. Journal of Geotechnical and Geoenvironmental Engineering, 145(5), 04019012. [Google Scholar] https://doi.org/10.1061/(ASCE)GT.1943-5606.0002035
USACE (2010) HEC-RAS river analysis system. Hydraulic reference manual. Version 6.4.1. U.S. Army Corps of Engineers, Hydrologic Engineering Center. http://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS_4.1_Reference_Manual.pdf
USACE (2014) Using HEC-RAS for dam break studies. TD-39. U.S. Army Coprs of Engineers, Hydrologic Engineering Center. http://www.hec.usace.army.mil/publications/TrainingDocuments/TD-39.pdf
Singh, S. K., Kanga, S., Đurin, B., Kranjčić, N., Chaurasia, R., & Markovinović, D. (2021). Flood risk modelling using HEC-RAS and geospatial techniques. E-ZBORNIK Electron. Collect. Pap. Fac. Civ. Eng, 11, 20-36. [Google Scholar] https://doi.org/10.47960/2232-9080.2021.22.11.20.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Libyan Journal of Ecological & Environmental Sciences and Technology

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.