تقييم الأضرار التي تلحق بالحمض النووي منقوص الأكسجين في الأشنات نتيجة لتلوث الهواء في مدينة مصراتة باستخدام تقنية تفاعل البلمرة المتسلسل للحمض النووي متعدد الاشكال المتضاعف (Rapd-PCR)
DOI:
https://doi.org/10.63359/qazysq27الكلمات المفتاحية:
الاشنات، Xanthoria، تلوث الهواء، الادلة الحيويةالملخص
الأشنات هي كائنات تكافلية تتكون من فطر وطحلب ينموان بشكل ثالوس لا يحتوي على غلاف أو جذور. تعتمد الأشنات على امتصاص الماء والمعادن من الهواء الجوي، مما يجعلها تُستخدم على نطاق واسع في أبحاث الرصد الحيوي إما كمؤشرات حيوية لمدى جودة الهواء أو كمتراكمات حيوية للمترسبات الجوية. في هذه الدراسة التي اعتمدت على زرع الأشنة زانثوريا باريتينا (Xanthoria parietina) واستخدامها كمؤشر حيوي لتقييم السمية الجينية لملوثات الهواء في مركز مدينة مصراتة، كشفت نتائج تحليل الحمض النووي متعدد الأشكال العشوائي المتضاعف (RAPD) عن تغييرات كبيرة في أنماط الحزم وانخفاض في استقرار الجينوم (GTS) بعد فترة تعرض لمدة أربعة أشهر للملوثات. تشير النتائج إلى أن الأشنة زانثوريا باريتينا تقدم رؤى حول مستوى العوامل ذات التأثير السام المحتمل للجينات في المنطقة المفحوصة. ومع ذلك، يجب توسيع هذا البحث ليغطي مناطق أكبر ولفترة أطول مع إجراء دراسة بيئية في الوقت نفسه لتقييم جودة الهواء في مدينة مصراتة.
المراجع
Abas, A. (2021). A systematic review on biomonitoring using lichen as the biological indicator: A decade of practices, progress and challenges. Ecological Indicators, 121, 107197. https://doi.org/10.1016/j.teadva.2023.200085
Al-Alam, J., Millet, M., Khoury, D., Rodrigues, A., Akoury, E., Tokajian, S., & Wazne, M. (2024). Biomonitoring of PAHs and PCBs in industrial, suburban, and rural areas using snails as sentinel organisms. Environmental Science and Pollution Research International, 31(3),4970–4984. https://doi.org/10.1007/s11356-023-31493-6
Allen, J. L., & Lendemer, J. C. (2021). Urban lichens. Yale University Press
Alosta E. M. (2018) Relationship between heavy metals pollution and their accumulation rates in cancer patients. [Unpublished master's thesis]. Libyan Academy for Postgraduate Studies. Misurata. Libya.
Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701.
Atienzar, F. A., Conradi, M., Evenden, A. J., Jha, A. N., & Depledge, M. H. (1999). Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo [a] pyrene. Environmental Toxicology and Chemistry, 18(10), 2275-2282. https://doi.org/10.1002/etc.5620181023
Atienzar, F. A., & Jha, A. N. (2006). The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: A critical review. Mutation Research, 613(2-3), 76–102. https://doi.org/10.1016/j.mrrev.2006.06.001
Augusto, S., Máguas, C., & Branquinho, C. (2013). Guidelines for biomonitoring persistent organic pollutants (POPs) using lichens and aquatic mosses: A review. Environmental Pollution, 180, 330–338. https://doi.org/10.1016/j.envpol.2013.05.019.
Belguidoum, A., Haichour, R., Lograda, T., & Ramdani, M. (2022). Biomonitoring of air pollution by lichen diversity in the urban area of Setif,Algeria. Biodiversitas Journal of Biological Diversity,23(2). https://doi.org/10.13057/biodiv/d230240
Bousbih, M., Lamhamedi, M. S., Abassi, M., Khasa, D. P., & Bejaoui, Z. (2025). Integration of mosses (Funaria hygrometrica) and lichens (Xanthoria parietina) as native bioindicators of atmospheric pollution by trace metal elements in Mediterranean forest plantations. Environments, 12(6), 191. https://doi.org/10.3390/environments12060191
Cansaran-Duman, D., Altunkaynak, E., Aslan, A., Büyük, İ., & Aras, S. (2015). Application of molecular markers to detect DNA damage caused by environmental pollutants in lichen species. Genetics and Molecular Research, 14(2), 4637–4650. https://doi.org/10.4238/2015.May.4.23.
Cansaran-Duman, D., Atakol, O., & Aras, S. (2011). Assessment of air pollution genotoxicity by RAPD in Evernia prunastri L. Ach. from around iron-steel factory in Karabük, Turkey. Journal of Environmental Sciences, 23(7), 1171–11789. https://doi.org/10.1016/s1001-0742(10)60505-0
Chaudhuri, S., & Roy, M. (2024). Global ambient air quality monitoring: Can mosses help? A systematic meta-analysis of literature about passive moss biomonitoring. Environment, Development and Sustainability, 26(3), 5735–5773. https://doi.org/10.1007/s10668-023-03043-0
Dilrukshi, H. A. C., Ruklani, N. C. S., & Rubasinghe, S. C. K. (2024). Cryptogams as bio-indicators for ecosystem monitoring in Sri Lanka: a comprehensive review and recommendations. Environmental monitoring and assessment, 196(12), 1231. https://doi.org/10.1007/s10661-024-13392-6.
Elbagermi, M. A., Edwards, H. G., & Alajtal, A. I. (2013). Monitoring of heavy metals content in soil collected from city centre and industrial areas of Misurata, Libya. International Journal of Analytical Chemistry, 2013, 312581. https://doi.org/10.1155/2013/312581
ElRhzaoui, G., Divakar, P. K., Crespo, A., Tahiri, H., & El Alaoui-Faris, F. E. (2015). Xanthoria parietina as a biomonitor of airborne heavy metal pollution in forest sites in the North East of Morocco. Mediterranean Botany, 36, 31.
Elsunousi, A. A. M., Sevik, H., Cetin, M., Ozel, H. B., & Ozel, H. U. (2021). Periodical and regional change of particulate matter and CO2 concentration in Misurata. Environmental monitoring and assessment, 193(11), 707. https://doi.org/10.1007/s10661-021-09478-0.
Gailey, F. A. Y., & Lloyd, O. L. (1986). Methodological investigations into low technology monitoring of atmospheric metal pollution: part 3—the degree of replicability of the metal concentrations. Environmental Pollution Series B, Chemical and Physical, 12(2), 85-109. https://doi.org/10.1016/0143-148X(86)90050-9
Galeano-Páez, C., Brango, H., Pastor-Sierra, K., Coneo-Pretelt, A., Arteaga-Arroyo, G., Peñata-Taborda, A., Espitia-Pérez, P., Ricardo-Caldera, D., Humanez-Álvarez, A., Londoño-Velasco, E., Espinosa-Sáez, R., Diaz-Ponguta, B., da Silva, J., Silva Corrêa, D., & Espitia-Pérez, L. (2024). Genotoxicity and cytotoxicity induced in vitro by airborne particulate matter (PM2.5) from an open-cast coal mining area. Atmosphere, 15(12), 1420. https://doi.org/10.3390/atmos15121420
Garcia, A., Saez, Y., Harris, I., Huang, X., & Collado, E. (2025). Advancements in air quality monitoring: a systematic review of IoT-based air quality monitoring and AI technologies. Artificial Intelligence Review, 58(9), 275. https://doi.org/10.1007/s10462-025-11277-9
Hamutoolu, R., Derici, M. K., Aras, E. S., Aslan, A., & Cansaran-Duman, D. (2020). The physiological and DNA damage response of the lichen Hypogymnia physodes to UV and heavy metal stress. Applied Ecology and Environmental Research, 18(2), 2315-2338.
Honegger, R., Zippler, U., Gansner, H., & Scherrer, S. (2004). Mating systems in the genus Xanthoria (lichen-forming ascomycetes). Mycol. Res., 108(Pt 5), 480-488.
http://doi.org / 10.1017/s0953756204009682
Jayawardena, U. A., Wickramasinghe, D. D., & Udagama, P. V. (2021). Cytogenotoxicity evaluation of a heavy metal mixture, detected in a polluted urban wetland: Micronucleus and comet induction in the Indian green frog (Euphlyctis hexadactylus) erythrocytes and the Allium cepa bioassay. Chemosphere, 277, 130278. https://doi.org/10.1016/j.chemosphere.2021.130278
Kaya, M., Çavuşoğlu, K., Yalçin, E., et al. (2023). DNA fragmentation and multifaceted toxicity induced by high-dose vanadium exposure determined by the bioindicator Allium test. Scientific Reports, 13, 8493. https://doi.org/10.1038/s41598-023-35783-4
Kang, Y., Aye, L., Ngo, T. D., & Zhou, J. (2022). Performance evaluation of low-cost air quality sensors: A review. Science of The Total Environment, 818, 151769. https://doi.org/10.1016/j.scitotenv.2021.151769
Khelil, R., Khelil, A., Dadamoussa, B., Cabello-Hurtado, F., & Esnault, M. A. (2013). Bio surveillance de la pollution de l'air à l'aide du lichen Xanthoria parietina. PhytoChem & BioSub Journal, 7(2), 41-51.
Kouadria, N., Belhoucine, F., Bouredja, N., Ait Kaci, M., Abismail, Y., & Alioua Berrebba, A. (2020). Bioaccumulation of lead by Xanthoria parietina and Hylocomium splendens, and its effect on some physiological parameters. J. Mater. Environ. Sci, 11, 247-254.
Krjukoviča, V., Balcerbule, Z., Lazarenko, V., Bērtiņš, M., & Vīksna, A. (2021). Lichens (Xanthoria parietina)-Bio-Indicators for Sulphur and Metallic Elements for Pollution Investigation in Riga City. Key Engineering Materials, 903, 106-110. https://doi.org/10.4028/www.scientific.net/KEM.903.106.
Luby, S. P., Biswas, D., Gurley, E. S., & Hossain, I. (2015). Why highly polluting methods are used to manufacture bricks in Bangladesh. Energy Sustain. Dev., 28, 68–74. https://doi.org/10.1016/j.esd.2015.07.003
Misra, P., Imasu, R., Hayashida, S., Arbain, A. A., Avtar, R., & Takeuchi, W. (2020). Mapping Brick Kilns to Support Environmental Impact Studies around Delhi Using Sentinel-2. ISPRS International Journal of Geo-Information, 9(9), 544. https://doi.org/10.3390/ijgi9090544
Møller, P., Danielsen, P. H., Jantzen, K., Roursgaard, M., & Loft, S. (2013). Oxidatively damaged DNA in animals exposed to particles. Critical Reviews in Toxicology, 43(2), 96–118. https://doi.org/10.3109/10408444.2012.756456
Morillas, L., Roales, J., Cruz, C., & Munzi, S. (2022). Non-toxic increases in nitrogen availability can improve the ability of the soil lichen Cladonia rangiferina to cope with environmental changes. J. Fungi, 8, 333. https://doi.org/10.3390/jof8020333.
Morillas L. (2024). Lichens as Bioindicators of Global Change Drivers. Journal of fungi (Basel, Switzerland), 10(1), 46 .https://doi.org/10.3390/jof10010046.
Musilova, P., Kadlcikova, D., Hradska, H., Vozdova, M., Selingerova, I., Cernohorska, H., ... & Rubes, J. (2023). Chromosome damage in regions with different levels of air pollution. Environmental and Molecular Mutagenesis, 64(6), 326-334. https://doi.org/10.1002/em.22562
Nassar, Y., Aissa, K., & Alsadi, S. (2017). Air pollution sources in Libya. Research & Reviews: Journal of Ecology and Environmental Sciences, 5, 63-79. https://scholar.ptuk.edu.ps/handle/123456789/213
Petrova, S., Velcheva, I., & Nikolov, B. (2024). Nature-based solutions to reduce air pollution: a case study from Plovdiv, Bulgaria, Using trees, herbs, mosses and lichens. Forests, 15(6), 928. https://doi.org/10.3390/f15060928
Sevik, H., Cetin, M., Ozel, H. B., & Pinar, B. (2019). Changes in Pb, Cr, and Cu concentrations in some bioindicators depending on traffic density on the basis of species and organs. Applied Ecology and Environmental Research, 17(6), 12843–12857. https://doi.org/10.15666/aeer/1706_1284312857.
Simmons, S. O., Fan, C. Y., Yeoman, K., Wakefield, J., & Ramabhadran, R. (2011). NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent. Current chemical genomics, 5, 1–12. https://doi.org/10.2174/187539730110501000.
Šrut, M., Štambuk, A., & Klobučar, G. I. (2013). What is Comet assay not telling us: AFLP reveals wider aspects of genotoxicity. Toxicology in vitro: an international journal published in association with BIBRA, 27(4), 1226–1232. https://doi.org/10.1016/j.tiv.2013.02.007
Takano, A. P. C., Rybak, J., & Veras, M. M. (2024). Bioindicators and human biomarkers as alternative approaches for cost-effective assessment of air pollution exposure. Frontiers in Environmental Engineering, 3, 1346863. https://doi.org/10.3389/fenve.2024.1346863.
Vardar, Ç., Basaran, E., Cansaran-Duman, D., & Aras, S. (2014). Air-quality biomonitoring: Assessment of genotoxicity of air pollution in the Province of Kayseri (Central Anatolia) by use of the lichen Pseudevernia furfuracea (L.) Zopf and amplified fragment-length polymorphism markers. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 759, 43-50. https://doi.org/10.1016/j.mrgentox.2013.09.011.
Verma, N., Pink, M., Rettenmeier, A. W., & Schmitz-Spanke, S. (2012). Review on proteomic analyses of benzo[a]pyrene toxicity. Proteomics, 12(11), 1731–1755. https://doi.org/10.1002/pmic.201100466.
World Health Organization. (2023). Overview of methods to assess population exposure to ambient air pollution. Geneva: World Health Organization. Available at: https://iris.who.int/bitstream/handle/10665/373014/9789240073494-eng.pdf?sequence=1 (Accessed January 6, 2024).
التنزيلات
منشور
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2025 المجلة الليبية لعلوم وتكنولوجيا البيئة

هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial 4.0 International License.





