تفاعلات التربة والملوثات في ظل تغير المناخ: مراجعة شاملة
DOI:
https://doi.org/10.63359/62xmzr32الكلمات المفتاحية:
التغير المناخي، العناصر الثقيلة، الملوثات العضوية، عمليات التربةالملخص
يُعد تلوث التربة بالمعادن الثقيلة والمركبات العضوية مشكلة بيئية خطيرة. حيث يُحدد مصير هذه الملوثات، وأشكالها الكيميائية، وخصائص التربة نفسها الطريقة التي ستنتقل بها وتحدث تأثيرات ضارة. تُعتبر عوامل مثل درجة الحرارة، مستويات الرطوبة، المحتوى العضوي، التركيب المعدني، والنشاط الميكروبيولوجي من العوامل الرئيسية التي تؤثر على سمية وحركية هذه الملوثات. وتظهر هذه المعايير حساسية بالغة لتأثيرات تغير المناخ، بما في ذلك زيادة تواتر أحداث الأمطار الشديدة، فترات الجفاف المطولة، تصاعد معدلات تآكل التربة، وارتفاع مستويات البحار. في هذه المراجعة، نجمع الأدلة التي تربط بين التغيرات المناخية في عمليات التربة والتغيرات في حركة ونقل وتخزين الملوثات. وتشير النتائج إلى أن التعديلات في معدل تجدد الكربون العضوي في التربة، وأنماط الجريان السطحي، وحالة الأكسدة والاختزال، وتعداد الميكروبات تحت ظروف مناخية متغيرة يمكن أن تزيد من تعرض الإنسان لهذه الملوثات. ومع ذلك، لا تزال هناك شكوك حول التفاعلات الدقيقة والتداعيات طويلة الأمد لهذه العمليات.
المراجع
Y. Pat, I. Ogulur, D. Yazici, Y. Mitamura, L. Cevhertas, O. C. Küçükkase, S. S. Mesisser, M. Akdis, K. Nadeau and C. Akdis. A. (2022). Effect of altered human exposome on the skin and mucosal epithelial barrier integrity. Tissue Barriers, 11(4). https://doi.org/10.1080/21688370.2022.2133877
Hanson, S. E., & Nicholls, R. J. (2020). Demand for Ports to 2050: Climate Policy, Growing Trade and the Impacts of Sea‐Level Rise. Earth’s Future, 8(8). https://doi.org/10.1029/2020ef001543
Wagare, D. S., Shirsath, S. E., Netankar, P., & Shaikh, M. (2021). Sustainable solvents in chemical synthesis: a review. Environmental Chemistry Letters, 19(4), 3263–3282. https://doi.org/10.1007/s10311-020-01176-6
Zaharescu, D. G., Vaquera-Ibarra, M. O., Munoz, E. N., Presler, J. K., Dontsova, K., Reinhard, C. T., Hunt, E. A., Gaddis, E. E., Li, K., Chorover, J., Burghelea, C. I., Maier, R. M., Palacios-Menendez, M. A., Roldán-Nicolau, E. C., Galey, M., Sandhaus, S., Amistadi, M. K., Domanik, K. J., & Castrejón-Martinez, R. (2019). Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-51274-x
Liu, H., Xu, C., Wang, H., Dai, J., Peng, J., & Wu, X. (2020). Bedrock-associated belowground and aboveground interactions and their implications for vegetation restoration in the karst critical zone of subtropical Southwest China. Progress in Physical Geography: Earth and Environment, 45(1), 7–19. https://doi.org/10.1177/0309133320949865
Pu, Y., Wei, X., Liu, J., Zhang, K., Li, B., Wei, Z., Zhang, M., He, T., Wang, Y., & Shao, X. (2024). Relationship between environmental evolution and human activities in the northeastern Qinghai-Xizang Plateau throughout the past millennium and its implications for the onset of the Anthropocene. Science China Earth Sciences, 67(11), 3536–3549. https://doi.org/10.1007/s11430-024-1407-x
Dao, H., Friot, D., & Peduzzi, P. (2018). National environmental limits and footprints based on the Planetary Boundaries framework: The case of Switzerland. Global Environmental Change, 52, 49–57. https://doi.org/10.1016/j.gloenvcha.2018.06.005
Tobian, A., Gerten, D., Cornell, S., Rockström, J., Schaphoff, S., Fetzer, I., & Andersen, L. S. (2024). Climate change critically affects the status of the land-system change planetary boundary. Environmental Research Letters, 19(5), 054060. https://doi.org/10.1088/1748-9326/ad40c2
Diamond, M. L., & Wang, Z. (2024). Safe and Just Earth System Boundaries for Novel Entities. Environmental Science & Technology Letters. https://doi.org/10.1021/acs.estlett.4c00517
Bhatti, U. A., Bhatti, M. A., Tang, H., Syam, M. S., Awwad, E. M., Sharaf, M., & Ghadi, Y. Y. (2023). Global production patterns: Understanding the relationship between greenhouse gas emissions, agriculture greening and climate variability. Environmental Research, 245, 118049. https://doi.org/10.1016/j.envres.2023.118049
Van Den Bergh, S. G., Chardon, I., Leite, M. F. A., Korthals, G. W., Mayer, J., Cougnon, M., Reheul, D., De Boer, W., & Bodelier, P. L. E. (2024). Soil aggregate stability governs field greenhouse gas fluxes in agricultural soils. Soil Biology and Biochemistry, 191, 109354. https://doi.org/10.1016/j.soilbio.2024.109354
Balta, I., Lemon, J., Murnane, C., Pet, I., Vintila, T., Mccleery, D., Callaway, T., Douglas, A., Stef, L., & Corcionivoschi, N. (2024). The One Health aspect of climate events with impact on foodborne pathogens transmission. One Health, 19, 100926. https://doi.org/10.1016/j.onehlt.2024.100926
Alava, J. J., Ross, P. S., Sumaila, U. R., & Cheung, W. W. L. (2017). Climate change-contaminant interactions in marine food webs: Toward a conceptual framework. Global Change Biology, 23(10), 3984–4001. https://doi.org/10.1111/gcb.13667
Thompson, M. S. A., Lynam, C. P., Schratzberger, M., & Couce, E. (2023). Climate change affects the distribution of diversity across marine food webs. Global Change Biology, 29(23), 6606–6619. https://doi.org/10.1111/gcb.16881
Fuchslueger, L., Brangarí, A. C., Solly, E. F., & Canarini, A. (2023). Overview: ‘Global change effects on terrestrial biogeochemistry at the plant-soil interface.’ copernicus gmbh. https://doi.org/10.5194/egusphere-2023-2975
Possinger, A. R., Strahm, B. D., Weiglein, T. L., Swanston, C. W., Heckman, K. A., Bowman, M. M., Sanclements, M. D., Hatten, J. A., Nave, L. E., Matosziuk, L. M., & Gallo, A. C. (2021). Climate Effects on Subsoil Carbon Loss Mediated by Soil Chemistry. Environmental Science & Technology, 55(23), 16224–16235. https://doi.org/10.1021/acs.est.1c04909
Liu, L., Liu, C., Fu, R., Nie, F., Zuo, W., Tian, Y., & Zhang, J. (2024). Full-chain analysis on emerging contaminants in soil: Source, migration and remediation. Chemosphere, 363, 142854. https://doi.org/10.1016/j.chemosphere.2024.142854
Xu, X., Zhang, J., Zhao, Z., Yu, Q., Zhang, D., Hua, J., Wang, Y., & Zhang, H. (2024). Identification and Assessment of Toxic Substances in Environmental Justice Cases. Toxics, 12(12), 900. https://doi.org/10.3390/toxics12120900
Li, Y., Wang, K., Dötterl, S., Xu, J., Garland, G., & Liu, X. (2024). The critical role of organic matter for cadmium-lead interactions in soil: Mechanisms and risks. Journal of Hazardous Materials, 476, 135123. https://doi.org/10.1016/j.jhazmat.2024.135123
Wang, J., Sun, S., Mu, L., Zhang, N., & Bao, L. (2024). Correlation Analysis of Ecosystem Reduction and Retention Effects and Spatial Distribution of Soil Potential Toxicity Elements. ACS Omega, 9(50). https://doi.org/10.1021/acsomega.4c05994
Shaaban, M., & Nunez-Delgado, A. (2024). Soil adsorption potential: Harnessing Earth’s living skin for mitigating climate change and greenhouse gas dynamics. Environmental Research, 251(Pt 2), 118738. https://doi.org/10.1016/j.envres.2024.118738
Han, J., Kim, M., & Ro, H.-M. (2020). Factors modifying thexa0structural configuration ofxa0oxyanions and organic acids adsorbed on iron (hydr)oxides in soils. A review. Environmental Chemistry Letters, 18(3), 631–662. https://doi.org/10.1007/s10311-020-00964-4
Zhang, H., Zhang, X., Xing, L., Zhao, R., Wang, M., Li, S., Liu, R., Lu, B., Guo, K., Li, H., Pu, M., Li, S., Zhao, C., Zhang, T., Lai, G., & Pu, W. (2024). Progress and prospects for remediation of soil potentially toxic elements pollution: A state-of-the-art review. Environmental Technology & Innovation, 35, 103703. https://doi.org/10.1016/j.eti.2024.103703
Zhou, X., & Cao, H. (2024). Effect of Common Ions in Agricultural Additives on the Retention of Cd, Cu, and Cr in Farmland Soils. Sustainability, 16(11), 4870. https://doi.org/10.3390/su16114870
Grant, K. E., Larson, C. J., Marple, M. A. T., Kerr, J. D., Mcfarlane, K. J., Finstad, K. M., Pett-Ridge, J., Repasch, M. N., & Broek, T. A. B. (2024). Diverse organic carbon dynamics captured by radiocarbon analysis of distinct compound classes in a grassland soil. copernicus gmbh. https://doi.org/10.5194/egusphere-2023-3125
Wang, M., Song, G., Zheng, Z., Mi, X., & Song, Z. (2024). Exploring the impact of fulvic acid and humic acid on heavy metal availability to alfalfa in molybdenum contaminated soil. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-83813-6
Li, H., Ma, M., Du, H., Wang, T., Wang, S., & Guo, P. (2024). Research Progress in the Joint Remediation of Plants–Microbes–Soil for Heavy Metal-Contaminated Soil in Mining Areas: A Review. Sustainability, 16(19), 8464. https://doi.org/10.3390/su16198464
Xu, L., Li, B. L., Peng, J., Ji, M., Xing, X., Zhao, F., & Wang, J. (2024). A Review on Remediation Technology and the Remediation Evaluation of Heavy Metal-Contaminated Soils. Toxics, 12(12), 897. https://doi.org/10.3390/toxics12120897
Teng, J., Hou, R., Dungait, J. A. J., Zhou, G., Kuzyakov, Y., Zhang, J., Tian, J., Cui, Z., Zhang, F., & Delgado-Baquerizo, M. (2024). Conservation agriculture improves soil health and sustains crop yields after long-term warming. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-53169-6
Sun, B., Xia, J., Yan, L., Jiang, M., Xia, F., Ping, J., & Han, G. (2024). Climate warming intensifies plant-soil causal relationships in a coastal wetland. Journal of Plant Ecology. https://doi.org/10.1093/jpe/rtae107
Zhang, L., Ding, J., Huang, R., Zhang, J., Liang, Y., Ma, Z., Zhou, J., Liu, C., Li, S., Sui, Y., & Huang, W. (2024). Warming Leads to Changes in Soil Organic Carbon Molecules Due to Decreased Mineral Protection. Journal of Agricultural and Food Chemistry, 72(14), 7765–7773. https://doi.org/10.1021/acs.jafc.3c09657
Jha, A., Calabrese, S., Souza, R., Bonetti, S., & Smith, A. P. (2023). Linking Soil Structure, Hydraulic Properties, and Organic Carbon Dynamics: A Holistic Framework to Study the Impact of Climate Change and Land Management. Journal of Geophysical Research: Biogeosciences, 128(7). https://doi.org/10.1029/2023jg007389
Zhang, W., Qi, S., Liu, Y., Yang, L., Zhang, J., Zhang, C., Zhang, W., Wang, Z., Mao, Z., & Yin, Z. (2022). The Role of Soil Salinization in Shaping the Spatio-Temporal Patterns of Soil Organic Carbon Stock. Remote Sensing, 14(13), 3204. https://doi.org/10.3390/rs14133204
Isella, A., & Manca, D. (2022). GHG Emissions by (Petro)Chemical Processes and Decarbonization Priorities—A Review. Energies, 15(20), 7560. https://doi.org/10.3390/en15207560
Shakoor, A., Mustafa, A., Altaf, M. M., Rehman, A., Ashraf, F., & Shakoor, S. (2020). Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing. Environmental Science and Pollution Research, 27(31), 38513–38536. https://doi.org/10.1007/s11356-020-10151-1
Ma, N., Gu, Y., Rosen, P. E., Vu, T., Lin, Y., Hou, K., Jiang, J. H., & Fahy, K. A. (2022). 21st Century Global and Regional Surface Temperature Projections. Earth and Space Science, 9(12). https://doi.org/10.1029/2022ea002662
Li, S., Li, S., Li, S., Liang, Y., Zhou, J., Ni, H., Ni, H., Huang, W., Kuang, Y., Liang, Y., Ding, J., Sun, Y., Huang, W., Hu, H., Sun, Y., Yuan, M. M., Zhang, J., Delgado‐Baquerizo, M., Kuang, Y., … Liang, Y. (2024). Intrinsic microbial temperature sensitivity and soil organic carbon decomposition in response to climate change. Global Change Biology, 30(6). https://doi.org/10.1111/gcb.17395
Wang, S., Li, C., Shi, D., Yang, Z., Guan, Y., Zhang, X., Zhang, M., & Wang, Z. (2024). Response of Topsoil Organic Carbon in the Forests of Northeast China Under Future Climate Scenarios. Forests, 15(12), 2138. https://doi.org/10.3390/f15122138
Han, Y., Qu, C., Hu, X., Sun, P., Kang, J., Cai, P., Rong, X., Chen, W., & Huang, Q. (2024). Responses of various organic carbon pools to elevated temperatures in soils. Science of the Total Environment, 955, 176836. https://doi.org/10.1016/j.scitotenv.2024.176836
Ferdush, J., Paul, V., Varco, J., Jones, K., & Sasidharan, S. M. (2023). Consequences of elevated CO2 on soil acidification, cation depletion, and inorganic carbon: A column-based experimental investigation. Soil and Tillage Research, 234, 105839. https://doi.org/10.1016/j.still.2023.105839
Luo, W. T., Jiang, Y., Wang, Z. W., Cai, J. P., Wang, R. Z., Zhang, Y. G., Zhang, Y. Y., Yang, S., Han, X. G., Li, M.-H., Nelson, P. N., & Wu, Y. N. (2015). Contrasting pH buffering patterns in neutral-alkaline soils along a 3600 km transect in northern China. Biogeosciences, 12(23), 7047–7056. https://doi.org/10.5194/bg-12-7047-2015
Chen, C., Xiao, W., & Chen, H. Y. H. (2023). Mapping global soil acidification under N deposition. Global Change Biology, 29(16), 4652–4661. https://doi.org/10.1111/gcb.16813
González-Prieto, S., & Romero-Estonllo, M. (2022). Soil physico-chemical changes half a century after drainage and cultivation of the former Antela lake (Galicia, NW Spain). Catena, 217, 106522. https://doi.org/10.1016/j.catena.2022.106522
Burke, S., Wang, X., Barst, B. D., Lamoureux, S. F., Pope, M., Lafrenière, M. J., Muir, D. C. G., Kirk, J., & Iqaluk, D. (2023). Divergent Temporal Trends of Mercury in Arctic Char from Paired Lakes Influenced by Climate-Related Drivers. Environmental Toxicology and Chemistry, 42(12), 2712–2725. https://doi.org/10.1002/etc.5744
Hung, H., Hermanson, M., Sühring, R., Bidleman, T., Wilson, S., Kallenborn, R., Muir, D., Dachs, J., Wang, X., Ball, H., De Silva, A., & Halsall, C. (2022). Climate change influence on the levels and trends of persistent organic pollutants (POPs) and chemicals of emerging Arctic concern (CEACs) in the Arctic physical environment - a review. Environmental Science: Processes & Impacts, 24(10), 1577–1615. https://doi.org/10.1039/d1em00485a
Arif, A. M., & Abdelaal, F. B. (2023). Diffusion of volatile organic compounds (VOCs) through elastomeric bituminous geomembranes (BGMs). Geotextiles and Geomembranes, 51(6), 41–55. https://doi.org/10.1016/j.geotexmem.2023.07.003
Zhang, Q., Pu, Q., Hao, Z., Liu, J., Zhang, K., Meng, B., & Feng, X. (2024). Warming inhibits HgII methylation but stimulates methylmercury demethylation in paddy soils. Science of the Total Environment, 930, 172832. https://doi.org/10.1016/j.scitotenv.2024.172832
Mebane, C. A., Schmidt, T. S., Balistrieri, L. S., & Miller, J. L. (2020). Bioaccumulation and Toxicity of Cadmium, Copper, Nickel, and Zinc and Their Mixtures to Aquatic Insect Communities. Environmental Toxicology and Chemistry, 39(4), 812–833. https://doi.org/10.1002/etc.4663
Richardson, M. J., Kabiri, S., Chapman, M., Corish, S., Bowles, K., Mclaughlin, M. J., & Grimison, C. (2022). Per- and Poly-Fluoroalkyl Substances in Runoff and Leaching from AFFF-Contaminated Soils: a Rainfall Simulation Study. Environmental Science & Technology, 56(23), 16857–16865. https://doi.org/10.1021/acs.est.2c05377
Schwanen, C. A., Schulte, P., Müller, J., & Schwarzbauer, J. (2023). Distribution, remobilization and accumulation of organic contaminants by flood events in a meso-scaled catchment system. Environmental Sciences Europe, 35(1). https://doi.org/10.1186/s12302-023-00717-4
Zhao, W., Lu, J., Wei, Q., Cao, J., Cui, J., Hou, Y., Zhang, K., & Chen, H. (2024). Spatial distribution, source apportionment, and risk assessment of perfluoroalkyl substances in urban soils of a typical densely urbanized and industrialized city, Northeast China. Science of the Total Environment, 953, 176166. https://doi.org/10.1016/j.scitotenv.2024.176166
Tang, L., Liu, X., Yang, G., Xia, J., Zhang, N., Wang, D., Deng, H., Mao, M., Li, X., & Ni, B.-J. (2020). Spatial distribution, sources and risk assessment of perfluoroalkyl substances in surface soils of a representative densely urbanized and industrialized city of China. CATENA, 198, 105059. https://doi.org/10.1016/j.catena.2020.105059
Liu, B., Yu, Y., Xie, L., Wang, X., Dong, W., Zhang, H., & Li, J. (2019). Perfluorinated Compounds (PFCs) in Soil of the Pearl River Delta, China: Spatial Distribution, Sources, and Ecological Risk Assessment. Archives of Environmental Contamination and Toxicology, 78(2), 182–189. https://doi.org/10.1007/s00244-019-00674-1
Zhou, M., Xiao, Y., Zhang, X., Sui, Y., Xiao, L., Lin, J., Cruse, R. M., Ding, G., & Liu, X. (2023). Warming-dominated climate change impacts on soil organic carbon fractions and aggregate stability in Mollisols. Geoderma, 438, 116618. https://doi.org/10.1016/j.geoderma.2023.116618
Tiefenbacher, A., Weigelhofer, G., Klik, A., Mabit, L., Santner, J., Wenzel, W., & Strauss, P. (2021). Antecedent soil moisture and rain intensity control pathways and quality of organic carbon exports from arable land. CATENA, 202, 105297. https://doi.org/10.1016/j.catena.2021.105297
Reichenbach, M., Doetterl, S., Fiener, P., Six, J., Hoyt, A., & Trumbore, S. (2023). Soil carbon stocks in stable tropical landforms are dominated by geochemical controls and not by land use. Global Change Biology, 29(9), 2591–2607. https://doi.org/10.1111/gcb.16622
Kong, J., Yang, R., He, Z., Du, J., Zhang, S., & Chen, L. (2022). Elevational variability in and controls on the temperature sensitivity of soil organic matter decomposition in alpine forests. Ecosphere, 13(4). https://doi.org/10.1002/ecs2.4010
Zhang, Y., Zhang, Y., Wang, R., Kuzyakov, Y., Sun, O. J., Zhang, H., Guo, X., Jiang, Y., Kuzyakov, Y., Kuzyakov, Y., Sun, O. J., Guo, X., Chen, L., Han, X., & Kuzyakov, Y. (2024). Global pattern of organic carbon pools in forest soils. Global Change Biology, 30(6). https://doi.org/10.1111/gcb.17386
Wang, Q., Yang, Q., Zhang, W., Chen, S., Chen, L., & Zhao, X. (2019). Global synthesis of temperature sensitivity of soil organic carbon decomposition: Latitudinal patterns and mechanisms. Functional Ecology, 33(3), 514–523. https://doi.org/10.1111/1365-2435.13256
Li, Q., Wang, Y., Li, Y., Li, L., Tang, M., Hu, W., Chen, L., & Ai, S. (2022). Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components. Science of the Total Environment, 825, 153862. https://doi.org/10.1016/j.scitotenv.2022.153862
Shu, A., Cui, Q., Xiao, Y., Liu, Z., Tan, W., Zhang, M., Yang, Z., Sun, H., Liu, S., Shang, J., & Tian, H. (2024). Spatial variations and vertical migration potentials of petroleum hydrocarbons with varying chain lengths in soils of different depths: Roles of solid and dissolved organic matters and soil texture. Science of the Total Environment, 955, 176984. https://doi.org/10.1016/j.scitotenv.2024.176984
Teslya, A. V., Poshvina, D. V., Stepanov, A. A., Iashnikov, A. V., & Vasilchenko, A. S. (2024). Extracellular Enzymes of Soils Under Organic and Conventional Cropping Systems: Predicted Functional Potential and Actual Activity. Agronomy, 14(11), 2634. https://doi.org/10.3390/agronomy14112634
Liu, C., He, W., Lu, G., Megharaj, M., Ma, Z., Li, N., Wang, Z., Tian, H., & Tao, K. (2024). The role of soil properties and temperature on soil organic carbon decomposition: Stronger influences than bacterial communities and pool‐specific responses to warming. Soil Use and Management, 40(4). https://doi.org/10.1111/sum.70010
Boyle, J. A., Ensminger, I., Stinchcombe, J. R., Murphy, B. K., & Frederickson, M. E. (2024). Resistance and resilience of soil microbiomes under climate change. Ecosphere, 15(12). https://doi.org/10.1002/ecs2.70077
Kou, B., Yuan, Y., Zhu, X., Ke, Y., Wang, H., Yu, T., & Tan, W. (2024). Effect of soil organic matter-mediated electron transfer on heavy metal remediation: Current status and perspectives. Science of the Total Environment, 917, 170451. https://doi.org/10.1016/j.scitotenv.2024.170451
Borah, B., & Parmar, P. (2024). Soil Organic Carbon Dynamics: Drivers of Climate Change-induced Soil Organic Carbon Loss at Various Ecosystems. International Journal of Environment and Climate Change, 14(10), 153–174. https://doi.org/10.9734/ijecc/2024/v14i104477
Song, F., Han, X., Yuan, M., Li, Y., Hu, N., Shakoor, A., Mustafa, A., & Wang, Y. (2024). Soil organic carbon under decadal elevated CO2: Pool size unchanged but stability reduced. Climate Smart Agriculture, 1(1), 100009. https://doi.org/10.1016/j.csag.2024.100009
Chitimus, D., Nedeff, V., Mosnegutu, E., Nedeff, F., Irimia, O., & Barsan, N. (2023). Studies on the Accumulation, Translocation, and Enrichment Capacity of Soils and the Plant Species Phragmites Australis (Common Reed) with Heavy Metals. Sustainability, 15(11), 8729. https://doi.org/10.3390/su15118729
Zhang, Y., Zong, R., Fang, N., & Zeng, Y. (2024). Soil Erosion Under Climate and Land Use Changes in China: Incorporating Ecological Policy Constraints. Land Degradation & Development, 36(1), 184–196. https://doi.org/10.1002/ldr.5353
Qu, J., Huang, J., & Liu, L. (2024). 13C evidence for the selective loss of active and inert organic carbon in soil aggregates under rain-induced overland flow erosion. Geoderma Regional, 38, e00822. https://doi.org/10.1016/j.geodrs.2024.e00822
Shi, J., Du, Y., Zou, J., Ma, S., Mao, S., Li, W., & Yu, C. (2023). Mechanisms of microbial-driven changes in soil ecological stoichiometry around gold mines. Journal of Hazardous Materials, 465, 133239. https://doi.org/10.1016/j.jhazmat.2023.133239
Song, X., Li, C., Qiu, Z., Wang, C., & Zeng, Q. (2024). Ecotoxicological effects of polyethylene microplastics and lead (Pb) on the biomass, activity, and community diversity of soil microbes. Environmental Research, 252(Pt 3), 119012. https://doi.org/10.1016/j.envres.2024.119012
Mu, Z., Tariq, A., Peñuelas, J., Filella, I., Ogaya, R., Sardans, J., Zeng, F., Llusià, J., Liu, L., Tie, L., & Asensio, D. (2024). Effects of long-term nighttime warming on extractable soil element composition in a Mediterranean shrubland. Science of the Total Environment, 951, 175708. https://doi.org/10.1016/j.scitotenv.2024.175708
Asensio, D., Zuccarini, P., Sardans, J., Marañón-Jiménez, S., Mattana, S., Ogaya, R., Mu, Z., Llusià, J., & Peñuelas, J. (2023). Soil biomass-related enzyme activity indicates minimal functional changes after 16 years of persistent drought treatment in a Mediterranean holm oak forest. Soil Biology and Biochemistry, 189, 109281. https://doi.org/10.1016/j.soilbio.2023.109281
Nieland, M. A., Lacy, P., Allison, S. D., Bhatnagar, J. M., Doroski, D. A., Frey, S. D., Greaney, K., Hobbie, S. E., Kuebbing, S. E., Lewis, D. B., Mcdaniel, M. D., Perakis, S. S., Raciti, S. M., Shaw, A. N., Sprunger, C. D., Strickland, M. S., Templer, P. H., Vietorisz, C., Ward, E. B., & Keiser, A. D. (2024). Nitrogen Deposition Weakens Soil Carbon Control of Nitrogen Dynamics Across the Contiguous United States. Global Change Biology, 30(12). https://doi.org/10.1111/gcb.70016
Wu, J., Wang, H., Li, G., & Chen, N. (2024). Effects of nitrogen deposition on soil nitrogen fractions and enzyme activities in wet meadow of the Qinghai-Tibet Plateau. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-83285-8
Cen, X., Müller, C., Kang, X., Zhou, X., Zhang, J., Yu, G., & He, N. (2024). Nitrogen deposition contributed to a global increase in nitrous oxide emissions from forest soils. Communications Earth & Environment, 5(1). https://doi.org/10.1038/s43247-024-01647-6
Lou, H., Yang, S., Liu, S., Wu, X., Zhou, B., Hao, F., Ren, X., Wang, Q., & Feng, A. (2024). Soil Phosphorus Transport in Response to Climate Change at Mid‐High Latitudes Under Intensive Agriculture. Land Degradation & Development, 35(17), 5327–5340. https://doi.org/10.1002/ldr.5299
Yu, H.-Y., Xu, Y., Wang, Q., Hu, M., Zhang, X., & Liu, T. (2024). Controlling factors of iron plaque formation and its adsorption of cadmium and arsenic throughout the entire life cycle of rice plants. Science of the Total Environment, 953, 176106. https://doi.org/10.1016/j.scitotenv.2024.176106
Liu, M., Cui, X., Tan, X., Xu, R., Fan, G., Hou, D., Lin, A., Zhao, P., Xiao, Y., Duan, G., Cheng, Y., & Qi, Y. (2024). Effects of remediation agents on rice and soil in toxic metal(loid)s contaminated paddy fields: A global meta-analysis. Science of The Total Environment, 925, 171656. https://doi.org/10.1016/j.scitotenv.2024.171656
Ouyang, N., Sheng, H., Huang, Y., Zhang, Y., Yu, Z., & Zhou, Q. (2021). Clay mineral composition of upland soils and its implication for pedogenesis and soil taxonomy in subtropical China. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-89049-y
Azzouz, A., Dewez, D., Benghaffour, A., Hausler, R., & Roy, R. (2024). Role of Clay Minerals in Natural Media Self-Regeneration from Organic Pollution-Prospects for Nature-Inspired Water Treatments. Molecules (Basel, Switzerland), 29(21), 5108. https://doi.org/10.3390/molecules29215108
Liu, X., Laipan, M., Zhang, C., Zhang, M., Wang, Z., Yuan, M., & Guo, J. (2023). Microbial weathering of montmorillonite and its implication for Cd(II) immobilization. Chemosphere, 349, 140850. https://doi.org/10.1016/j.chemosphere.2023.140850
Wu, B., Wang, J., He, X., Dai, H., Zheng, X., Ma, J., Yao, Y., Liu, D., Yu, W., Chen, B., & Chu, C. (2024). Accelerated Indirect Photodegradation of Organic Pollutants at the Soil-Water Interface. Environmental Science & Technology, 58(45), 20181–20189. https://doi.org/10.1021/acs.est.4c06993
Bolan, S., Padhye, L. P., Jasemizad, T., Govarthanan, M., Karmegam, N., Wijesekara, H., Amarasiri, D., Hou, D., Zhou, P., Biswal, B. K., Balasubramanian, R., Wang, H., Siddique, K. H. M., Rinklebe, J., Kirkham, M. B., & Bolan, N. (2023). Impacts of climate change on the fate of contaminants through extreme weather events. Science of The Total Environment, 909, 168388. https://doi.org/10.1016/j.scitotenv.2023.168388
Sarkar, B., Ramanayaka, S., Mukhopadhyay, R., Ok, Y. S., & Bolan, N. (2021). The role of soils in the disposition, sequestration and decontamination of environmental contaminants. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1834), 20200177. https://doi.org/10.1098/rstb.2020.0177
Qu, H., Qu, H., Ding, K., Ding, K., Ao, M., Ao, M., Ye, Z., Ye, Z., Liu, T., Liu, T., Hu, Z., Cao, Y., Morel, J.-L., Morel, J.-L., Baker, A. J. M., Baker, A. J. M., Tang, Y., Tang, Y., Qiu, R., … Wang, S. (2024). New insights into the controversy of reactive mineral-controlled arsenopyrite dissolution and arsenic release. Water Research, 262, 122051. https://doi.org/10.1016/j.watres.2024.122051
Zhang, D.-R., Zhang, R.-Y., Zhu, X.-T., Kong, W.-B., Cao, C., Zheng, L., & Pakostova, E. (2024). Novel insights into the kinetics and mechanism of arsenopyrite bio-dissolution enhanced by pyrite. Journal of Hazardous Materials, 470, 134193. https://doi.org/10.1016/j.jhazmat.2024.134193
Lemonte, J. J., Sanchez, J. Z., Stuckey, J. W., Rinklebe, J., Sparks, D. L., & Tappero, R. (2017). Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils. Environmental Science & Technology, 51(11), 5913–5922. https://doi.org/10.1021/acs.est.6b06152
Mikutta, C., Niegisch, M., Thompson, A., Behrens, R., Schnee, L. S., Hoppe, M., & Dohrmann, R. (2024). Redox cycling of straw-amended soil simultaneously increases iron oxide crystallinity and the content of highly disordered organo-iron(III) solids. Geochimica et Cosmochimica Acta, 371, 126–143. https://doi.org/10.1016/j.gca.2024.02.009
Jones, M. W., Peters, G. P., Gasser, T., Andrew, R. M., Schwingshackl, C., Gütschow, J., Houghton, R. A., Friedlingstein, P., Pongratz, J., & Le Quéré, C. (2023). National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Scientific Data, 10(1). https://doi.org/10.1038/s41597-023-02041-1
Li, Y., Wang, J., Shen, C., Zhou, G., Delgado-Baquerizo, M., & Ge, Y. (2024). Microbial Diversity Losses Constrain the Capacity of Soils to Mitigate Climate Change. Global Change Biology, 30(12). https://doi.org/10.1111/gcb.17601
Underwood, T. R., Bourg, I. C., & Rosso, K. M. (2024). Mineral-associated organic matter is heterogeneous and structured by hydrophobic, charged, and polar interactions. Proceedings of the National Academy of Sciences, 121(46). https://doi.org/10.1073/pnas.2413216121
Zaman, W., Ali, S., & Akhtar, M. S. (2024). Harnessing the Power of Plants: Innovative Approaches to Pollution Prevention and Mitigation. Sustainability, 16(23), 10587. https://doi.org/10.3390/su162310587
Wang, H., Fan, H., Zheng, N., & Yao, H. (2024). Elevated CO2 enhanced the incorporation of 13C-residue into plant but depressed it in the microbe in the tomato (Solanum lycopersicum L.) rhizosphere soils. Applied Soil Ecology, 198, 105388. https://doi.org/10.1016/j.apsoil.2024.105388
Deng, S., Zhang, X., Zhu, Y., & Zhuo, R. (2024). Recent advances in phyto-combined remediation of heavy metal pollution in soil. Biotechnology Advances, 72, 108337. https://doi.org/10.1016/j.biotechadv.2024.108337
Eze, M. O., & Amuji, C. F. (2024). Elucidating the significant roles of root exudates in organic pollutant biotransformation within the rhizosphere. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-53027-x
He, M., Li, Z., & Mei, P. (2022). Corrigendum: Root exudate glycine synergistically promotes phytoremediation of petroleum-contaminated soil. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.1092055
Mei, L., Zhao, H., Xu, L., Lin, Y., Yang, X., Liu, H., & Li, A. (2024). The Effects of Warming and Nitrogen Application on the Stoichiometric Characteristics of Arbuscular Mycorrhizal Fungi in Forest Ecosystems. Forests, 15(12), 2121. https://doi.org/10.3390/f15122121
Yang, X., Shi, L., Guo, J., Zhang, T., & Yuan, M. (2021). Suppression of Arbuscular Mycorrhizal Fungi Aggravates the Negative Interactive Effects of Warming and Nitrogen Addition on Soil Bacterial and Fungal Diversity and Community Composition. Applied and Environmental Microbiology, 87(22). https://doi.org/10.1128/aem.01523-21
Khan, A., & Ball, B. A. (2023). Soil microbial responses to simulated climate change across polar ecosystems. Science of The Total Environment, 909, 168556. https://doi.org/10.1016/j.scitotenv.2023.168556
التنزيلات
منشور
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2025 المجلة الليبية لعلوم وتكنولوجيا البيئة (م ل ع ت ب)

هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial 4.0 International License.