تقدير التراكم الحيوي للنحاس والزنك في أشجار وترب الكافور والفيكس في مدينة درنة – ليبيا

المؤلفون

  • مسعود مصطفى زعطوط كلية الموارد الطبيعية وعلوم البيئة جامعة درنة ليبيا
  • صاح عطية ابوغرسة كلية الموار الطبيعية وعلوم البيئة جامعة عمر المختار ليبيا
  • سالمة اسماعيل جبريل كلية الموارد الطبيعية وعلوم البيئة جامعة درنة ليبيا

DOI:

https://doi.org/10.63359/z8jtmq52

الكلمات المفتاحية:

الزنك، النحاس، التربة، الاوراق، الكافور، الفيكس

الملخص

هدفت الدراسة إلى تقدير التراكم الحيوي للمعادن الثقيلة (النحاس والزنك) في تربة وأوراق الأوكالبتوس جومفوسيفالا واللبخ نيتيدا في ثلاث مناطق مختلفة في مدينة دارنا وجدوى استغلالها في المراقبة الحيوية للهواء الملوث بالمعادن الثقيلة في المناطق الحضرية. وكانت المناطق الثلاث المختارة هي وسط المدينة ومصنع الأسمنت ومحطة البخار . تم استخدام التصميم العشوائي الكامل في التجربة بثلاثة عوامل . وأظهرت النتائج اختلافات كبيرة بين مناطق الدراسة في محتواها من النحاس والزنك حيث سجلت منطقة وسط المدينة أعلى محتوى من الزنك ، تليها منطقة محطة البخار التي سجلت أيضا أعلى محتوى من النحاس تليها منطقة مصنع الأسمنت . أظهرت الأشجار اختلافات كبيرة بينهما في محتواها من الزنك ، وسجلت الأوكالبتوس جومفوسيفالا محتوى الزنك أعلى بكثير من اللبخ نيتيدا بينما كان محتواها من النحاس ضئيلا . كما كشفت النتائج عن اختلافات كبيرة بين العينات (الأوراق والتربة) حيث كان محتوى الزنك والنحاس أعلى بكثير في التربة مقارنة بالأوراق.  كان تأثير التفاعل بين المناطق والأشجار على محتوى النحاس ضئيلا بينما كان له تأثير كبير على محتوى الزنك, كان تأثير التفاعل بين الأشجار والعينات على محتوى الزنك ضئيلا بينما كان كبيرا على محتوى النحاس .كما أظهرت النتائج تأثيرا كبيرا للتفاعل بين المناطق ونوع العينة (الأوراق والتربة) وتأثير تفاعل كبير للعوامل الثلاثة على محتوى النحاس والزنك.

المراجع

Adrees, M., S. Ali, M. Rizwan & M. Ibrahim (2015). The effect of excess copper on growth and physiology of important food crops: a review. Environ. Sci. Pollut. Res., 22: 8148–8162. https://doi.org/10.1007/s11356-015-4496-5

Anant, J. K., S. R. Inchulkar & S. Bhagat (2018). An overview of copper toxicity relevance to public health. Eur. J. Pharm. Med. Res., 5(11): 232-237 http://www.ejpmr.com

Arbaoui, S., B. Campanella, S. Rezgui, R. Paul & T. Bettaieb (2014). Bioaccumulation and photosynthetic activity response of kenaf (Hibicus cannabinus L.) to cadmium and zinc.Greener.J.Agric.Sci.,4:91–100 http://dx.doi.org/10.15580/GJAS.2014.3.1216131031

Asaad, Muhammad, Ghayath Abbas, Ibrahim Nisafi and Osama Radwan. (2014). Determining the trace of some mineral elements in the dusty swimming pool on the leaves of some trees on the Syrian coast. Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. (36) No. (5).

Aslam, J.; Khan, A.S.; Hkan, H.S.( 2013) Heavy metals contamination in roadside soil near different traffic signals in Dubai, United Arab Emirates. J. Saudi Chem. Soc. 17, 315–319. https://doi.org/10.1016/j.jscs.2011.04.015

Azeez, J.O., S.A. Mesele, B.O. Sarumi, J.A. Ogundele, A.O. Uponi & A.O. Hassan (2014). Soil metal pollution as a function of traffic density and distance from road in emerging cities: a case study of Abeokuta, southwestern Nigeria. Arc Agron. Soil Sci., 60:275–295 https://doi.org/10.1080/03650340.2013.792406

Baker, A. J. M. & R. R. Brooks (1989). Terrestrial higher plants which hyperaccumulate metallic elements: A review of their distribution, ecology and phytochemistry. Biorecovery1:81https://www.researchgate.net/publication/247713966_Terrestrial_Higher_Plants_Which_Hyperaccumulate_Metallic_Elements_A_Review_of_Their_Distribution_E

Cakmak, I. (2000). Possible roles of Zinc in protecting plant cells from damage by reactive oxygen species. New Phytol., 146:185–205 https://doi.org/10.1046/j.1469-8137.2000.00630.x

Castaldi S., F. A. Rutigliano & A. Virzo De Santo (2004). Suitability of soil microbial parameters as indicators of heavy metal pollution. Water, Air and Soil Pollution, 158: 21–35 https://ui.adsabs.harvard.edu/link_gateway/2004WASP..158...21S/doi:10.1023/B:WATE.0000044824.88079.d9

Chandra, R. & V. Kumar (2018). Phytoremediation: a green sustainable technology for industrial waste management. In: Chandra, R., Dubey, N., Kumar, V. (Eds.), Phytoremediation of Environmental Pollutants. CRC Press, Boca Raton, FL https://doi.org/10.4324/9781315161549 .

El-Etre, A. & Z. El-Tantawy (2006). Inhibition of metallic corrosion using Ficus extract.PortugaliaeElectrochimicaActa24(3):347–356. http://dx.doi.org/10.4152/pea.200603347

El-Khatib, A. A., N. A. Youssef, N. A. Barakat & N. A. Samir (2020). Responses of Eucalyptus globulus and Ficus nitida to different potential of heavy metal air pollution. Int.J.Phytoremed.,22(10):986-999. https://doi.org/10.1080/15226514.2020.1719031

Ernst, W. H. O., J. A. C. Verkleji & H. Schat (1992). Metal tolerance in plants. Acta Bot. Neerl.,41:229-248.https://scispace.com/pdf/metal-tolerance-in-plants-256tfcq6ts.pdf

Fontes, R.L.S. & F.R. Cox (1998). Zinc toxicity in soybean grown at high iron concentration in nutrient solution.J.PlantNutri.,21:1723-1730. https://doi.org/10.1080/01904169809365517

Foy, C., R. Chaney & M. White (2003). The physiology of metal toxicity in plants. Ann. Rev.Plant.Physiol29:511–566 http://dx.doi.org/10.1146/annurev.pp.29.060178.002455

Ghrefat, H. & N. Yusuf (2006). “Assessing Mn, Fe, Cu, Zn and Cd Pollution in Bottom Sediments of Wadi Al-Arab Dam, Jordan”. Chemosphere, 65(11): 2114-2121. https://doi.org/10.1016/j.chemosphere.2006.06.043

Gratão, P. L., A. Polle , P. J. Lea & R. A. Azevedo (2005). Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol., 32(6): 481-494. http://dx.doi.org/10.1071/FP05016

Hu, Y., D. Wang, L. Wei, X. Zhang & B. Song (2014). Bioaccumulation of heavy metals in plant leaves from Yan × an city of the Loess Plateau, China. Ecotoxicology and Environmental Safety, 110: 82-88. https://doi.org/10.1016/j.ecoenv.2014.08.021

Jadia, C. D. & M. H. Fulekar (2009). Phytoremediation of heavy metals: Recent techniques.Afri.J.Biotech.,8(6):921-928. https://www.ajol.info/index.php/ajb/article/view/59987

Jaishankar, M., T. Tseten, N. Anbalagan, B. B. Mathew & K. N. Beeregowda (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicol., 7(2): 60–72. https://doi.org/10.2478/intox-2014-0009

Jarup,L(2003). Hazards of heavy metal contamination

Brit. Med. Bull., 68 (2003), pp. 167-182 https://doi.org/10.1093/bmb/ldg032

Kabata, A. Pendias (2001). Trace Elements in Soils and Plants. CRC, Washington. https://www.scirp.org/reference/referencespapers?referenceid=1544363

Kabata, A. Pendias (2010). “Trace Metals in Soils and Plants” 2nd Edition, CRC Press, Boca Raton https://doi.org/10.1201/b10158 .

Kelepertzis, E. (2014). Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma 221–222: 82–90. https://doi.org/10.1016/j.geoderma.2014.01.007

Keller, C., M. Rizwan, J.C. Davidian, O. S. Pokrovsky, N. Bovet, P. Chaurand & J.D. Meunier (2015). Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 μM Cu. Planta, 241: 847–860 https://doi.org/10.1007/s00425-014-2220-1

Kumar, A. & N.C. Aery (2016). Impact, metabolism, and toxicity of heavy metals in plants. In Plant Responses to Xenobiotics (pp. 141-176). Springer, Singapore http://dx.doi.org/10.1007/978-981-10-2860-1_7

Lattemann, S., & Höpner, T. (2008). Environmental impact and impact assessment of seawater desalination.Desalination,220(1-3),1-15. https://doi.org/10.1016/j.desal.2007.03.009

Lewis, S., M.E. Donkin & M.H. Depledge (2001). Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquatic Toxicology, 51: 277-2914. https://doi.org/10.1016/s0166-445x(00)00119-3

Lin, Q., Y.X. Chen, H.M. Chen, Y.L. Yu, Y.M. Luo & M.H. Wong (2003). Chemical behavior of Cd in rice rhizosphere. Chemosphere 50, 755–761. https://doi.org/10.1016/S0045-6535(02)00216-3

Liu, X., Y. Gao, S. Khan, G. Duan, A. Chen, L. Ling, L. Zhao, Z. Liu& X. Wu (2008). Accumulation of Pb, Cu, and Zn in native plants growing on contaminated sites and their potential accumulation capacity in Heqing, Yunnan. J. Environ. Sci.,20 (12): 1469–1474 https://doi.org/10.1016/S1001-0742(08)62551-6

Lombi, E., F. J. Zhao, S. P. McGrath, S. D. Young & G. A. Sacchi (2001). Physiological evidence for a high-affinity cadmium transporter highly expressed in Thlaspi caerulescens ecotype. New Phytol. 149, 53–60. https://doi.org/10.1046/j.1469-8137.2001.00003.x

Macnair, M.R. (2003) Within- and between-population genetic variation for Zn accumulation in Arabidopsis halleri.NewPhytol.155:59–66. https://doi.org/10.1046/j.1469-8137.2002.00445.x

Mahmood, T. & K.R. Islam (2006) Response of rice seedlings to copper toxicity and acidity. J. Plant Nutr., 29: 943–957 https://doi.org/10.1080/01904160600651704

Memon, A.R. (2016). Metal Hyperaccumulators: Mechanisms of Hyperaccumulation and Metal Tolerance. In Phytoremediation, 1st ed.; Ansari, A.A., Gill, S.S., Gill, R., Lanza, G.R., Newman, L., Eds.; Springer: Cham, Switzerland, e 3: 239–268. http://dx.doi.org/10.1007/978-3-319-40148-5_8

Nagajyoti, P.C., K.D. Lee & T.V.M. Sreekanth (2010). Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett., 8: 199-216. http://dx.doi.org/10.1007/s10311-010-0297-8

Nasser, H., K. Khalil & S. Mahmoud (2022). Study of the cumulative ability of Ficus nitida trees for some heavy metal elements in the city of Jableh (Syria). Tishreen University Journal for Research and Scientific Studies – Biol. Sci., (44): 2. https://journal.tishreen.edu.sy/index.php/bioscnc/article/view/12788

Nolan, K. (2003). Copper Toxicity Syndrome. J. Orthomol. Psychiatry 12(4): 270 – 282. https://isom.ca/wpcontent/uploads/2020/01/JOM_1983_12_4_04_Copper_Toxicity_Syndrome.pdf

Osman, M.E.H., S.S. El-Feky, M.I. Elshahawy & E.M. Shaker (2017). Efficiency of flax (Linum usitatissimum L.) as a phytoremediator plant for the contaminated soils with heavy metals.IJAER 3:3577–3600. https://www.researchgate.net/publication/319852471_International_Journal_of_Agriculture_and_Environmental_Research_EFFICIENCY_OF_FLAX_Linum_usitatissimum_L_AS_A_PHYTOREMEDIATOR_PLANT_FOR_THE_CONTAMINATED_SOILS_WITH_HEAVY_METALS

Padmavathiamma, P.K. & L.Y. Li (2007). Phytoremediation technology: hyperaccumulation metals in plants. Water, Air Soil Pollution, 184: 105-126. http://dx.doi.org/10.1007/s11270-007-9401-5

Page, A. L., R. H. Miller & D. R. Keeny (1982). Methods of soil analysis part 2 Amer. Soc. Agric. Inc. Madison W19:595. https://www.wiley.com/en-gb/Methods+of+Soil+Analysis%2C+Part+2%3A+Chemical+and+Microbiological+Properties%2C+2nd+Edition-p-9780891189770

Rowell, D.L. (1997). Bodenkunde Untersuchungsmethoden und ihre Anwendungen. Springer-Verlag. Springer-Verlag, Berlin Heidelberg. Germany, 607p. https://www.abebooks.co.uk/9783540618256/Bodenkunde-Untersuchungsmethoden-Anwendungen-Rowell-David-3540618252/plp

Sahli, L., & Belhiouani, H. (2021). Ficus retusa L. as possible indicator of air metallic pollution in urban environmentSahli Leila, Belhiouani Hadjer. http://dx.doi.org/10.21203/rs.3.rs-282061/v1

Salt, D.E., R.D. Smith & I. Raskin (1998). Phytoremediation. Annu. Rev. Plant Biol., 49: 643–668. https://doi.org/10.1146/annurev.arplant.49.1.643

Sarhan, Y., W. Badawy, M. Frontasyeva, W. Arafa, A. Hussein & H. El-Samman (2019). Neutron activation analysis to probe the air pollution using plant biomonitoring in Egypt RAP. Conf.Proceed.,4:125–130. http://dx.doi.org/10.37392/RapProc.2019.25

Sarwar, N., M. Imran, M.R. Shaheen, W. Ishaque, M.A. Kamran, A. Matloob, A. Rehim & S. Hussain (2017). Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 171: 710-721. https://doi.org/10.1016/j.chemosphere.2016.12.116

SAS institute (2008). The SAS System for Windows, release 9.2. Cary NC: SAS institute

Schuhmacher, M., M. Nadal & J.L. Domingo (2009). Environmental monitoring of PCDD/F and metals in the vicinity of a cement plant after using sewage sludge as a secondary fuel.Chemosphere,74:1502-5108. https://doi.org/10.1016/j.chemosphere.2008.11.055

Serbula, S.M., D.D. Miljkovic, R.M. Kovacevic & A.A. Ilic (2012). Assessment of airborne heavy metal pollution using plant parts and topsoil. Ecotoxicology and Environ. Safety, 76: 209-214. https://doi.org/10.1016/j.ecoenv.2011.10.009 A.L.O. Silva, P.R.G. Barrocas, S.C. Jacob, J.C. Moreira

Silva ,A.L.O., P.R.G. Barrocas, S.C. Jacob, J.C. Moreira.(2005). Brazil. J. Plant Physiol., 17 (2005), pp. 79-93

Su, C. (2014). A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environmental Skeptics and Critics, 3(2), 24. http://www.iaees.org/publications/journals/environsc/articles/2014-3%282%29/a-review-on-heavy-metal-contamination-in-the-soil-worldwide.pdf

Thambavani, D. S. & R. S. Kumar (2011). Effect of cement dust on photosynthetic pigments of selected plant species. Asian J. Environ. Sci., 6(2): 161–167. https://researchjournal.co.in/online/AJES/AJES%206(2)/6_A-161-167.pdf

Tóth, G., T. Hermann, M.R. Da Silva & L. Montanarell (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int., 88:299–309 https://doi.org/10.1016/j.envint.2015.12.017

Tularam, G. A., & Ilahee, M. (2007). Environmental concerns of desalinating seawater using reverse osmosis. Journal of Environmental monitoring, 9(8), 805-813. https://doi.org/10.1039/b708455m

Yargholi, B., A. A. Azimi, A. Baghvand, A. M. Liaghat and G. A. Fardi (2008). Investigation of cadmium absorption and accumulation in different parts of some vegetables. Amer.-Eur. J. Agric. Environ. Sci., 3: 357-364. http://www.idosi.org/aejaes/jaes3(3)/10.pdf

Zhuang, P., Z. Huiling & S. Wensheng (2009). Biotransfer of heavy metals along a soil-plant-insect-chicken food chain: Field study. J. Environ. Sci., 21: 849–853. https://doi.org/10.1016/S1001-0742(08)62351-7

Zunni, S.A. & A.M. Bayoumi (2006). Important local and exotic trees and shrubs in Jabal el-Akhdar, Libya (In Arabic). Aldar Academy for printing, authoring, translation and publishing. Tripoli, Libya.

التنزيلات

منشور

03.09.2025

كيفية الاقتباس

تقدير التراكم الحيوي للنحاس والزنك في أشجار وترب الكافور والفيكس في مدينة درنة – ليبيا. (2025). المجلة الليبية لعلوم وتكنولوجيا البيئة (م ل ع ت ب), 7(2), 72-80. https://doi.org/10.63359/z8jtmq52

المؤلفات المشابهة

1-10 من 50

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.