Assessment of DNA Damage in Lichens Caused by Air Pollution in Misurata Using Rapd-PCR

Authors

DOI:

https://doi.org/10.63359/qazysq27

Keywords:

Lichen, Xanthoria, air pollution, bio-indicator

Abstract

Lichens are widely used in biomonitoring studies of air pollution, either as bioindicator of air quality or as bioaccumulator of atmospheric deposition. In this lichen transplant study, Xanthoria parietina was used as bioindicator to assess the genotoxicity of air pollution in the center area of Misurata City; RAPD profiles revealed significant alteration in the band pattern and decreasing in genomic template stability (GTS)following 4 months of exposure to pollutants. the present results indicate that the lichen species X. parietina provides information about the level of potential genotoxic agents in the studied area. However, this study need to be extended to include larger areas for belonged period with ecological study conducted in parallel to investigate the quality of the air in Misurata.

Author Biographies

  • Alaa S. Biat Almal, Misurata University

    Department of Genetics and Biotechnology/ Faculty of Science

  • Sundus A. Altaeb, Misurata University

    Department of Genetics and Biotechnology

References

Abas, A. (2021). A systematic review on biomonitoring using lichen as the biological indicator: A decade of practices, progress and challenges. Ecological Indicators, 121, 107197. https://doi.org/10.1016/j.teadva.2023.200085

Al-Alam, J., Millet, M., Khoury, D., Rodrigues, A., Akoury, E., Tokajian, S., & Wazne, M. (2024). Biomonitoring of PAHs and PCBs in industrial, suburban, and rural areas using snails as sentinel organisms. Environmental Science and Pollution Research International, 31(3),4970–4984. https://doi.org/10.1007/s11356-023-31493-6

Allen, J. L., & Lendemer, J. C. (2021). Urban lichens. Yale University Press

Alosta E. M. (2018) Relationship between heavy metals pollution and their accumulation rates in cancer patients. [Unpublished master's thesis]. Libyan Academy for Postgraduate Studies. Misurata. Libya.

Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701.

Atienzar, F. A., Conradi, M., Evenden, A. J., Jha, A. N., & Depledge, M. H. (1999). Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo [a] pyrene. Environmental Toxicology and Chemistry, 18(10), 2275-2282. https://doi.org/10.1002/etc.5620181023

Atienzar, F. A., & Jha, A. N. (2006). The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: A critical review. Mutation Research, 613(2-3), 76–102. https://doi.org/10.1016/j.mrrev.2006.06.001

Augusto, S., Máguas, C., & Branquinho, C. (2013). Guidelines for biomonitoring persistent organic pollutants (POPs) using lichens and aquatic mosses: A review. Environmental Pollution, 180, 330–338. https://doi.org/10.1016/j.envpol.2013.05.019.

Belguidoum, A., Haichour, R., Lograda, T., & Ramdani, M. (2022). Biomonitoring of air pollution by lichen diversity in the urban area of Setif,Algeria. Biodiversitas Journal of Biological Diversity,23(2). https://doi.org/10.13057/biodiv/d230240

Bousbih, M., Lamhamedi, M. S., Abassi, M., Khasa, D. P., & Bejaoui, Z. (2025). Integration of mosses (Funaria hygrometrica) and lichens (Xanthoria parietina) as native bioindicators of atmospheric pollution by trace metal elements in Mediterranean forest plantations. Environments, 12(6), 191. https://doi.org/10.3390/environments12060191

Cansaran-Duman, D., Altunkaynak, E., Aslan, A., Büyük, İ., & Aras, S. (2015). Application of molecular markers to detect DNA damage caused by environmental pollutants in lichen species. Genetics and Molecular Research, 14(2), 4637–4650. https://doi.org/10.4238/2015.May.4.23.

Cansaran-Duman, D., Atakol, O., & Aras, S. (2011). Assessment of air pollution genotoxicity by RAPD in Evernia prunastri L. Ach. from around iron-steel factory in Karabük, Turkey. Journal of Environmental Sciences, 23(7), 1171–11789. https://doi.org/10.1016/s1001-0742(10)60505-0

Chaudhuri, S., & Roy, M. (2024). Global ambient air quality monitoring: Can mosses help? A systematic meta-analysis of literature about passive moss biomonitoring. Environment, Development and Sustainability, 26(3), 5735–5773. https://doi.org/10.1007/s10668-023-03043-0

Dilrukshi, H. A. C., Ruklani, N. C. S., & Rubasinghe, S. C. K. (2024). Cryptogams as bio-indicators for ecosystem monitoring in Sri Lanka: a comprehensive review and recommendations. Environmental monitoring and assessment, 196(12), 1231. https://doi.org/10.1007/s10661-024-13392-6.

Elbagermi, M. A., Edwards, H. G., & Alajtal, A. I. (2013). Monitoring of heavy metals content in soil collected from city centre and industrial areas of Misurata, Libya. International Journal of Analytical Chemistry, 2013, 312581. https://doi.org/10.1155/2013/312581

ElRhzaoui, G., Divakar, P. K., Crespo, A., Tahiri, H., & El Alaoui-Faris, F. E. (2015). Xanthoria parietina as a biomonitor of airborne heavy metal pollution in forest sites in the North East of Morocco. Mediterranean Botany, 36, 31.

Elsunousi, A. A. M., Sevik, H., Cetin, M., Ozel, H. B., & Ozel, H. U. (2021). Periodical and regional change of particulate matter and CO2 concentration in Misurata. Environmental monitoring and assessment, 193(11), 707. https://doi.org/10.1007/s10661-021-09478-0.

Gailey, F. A. Y., & Lloyd, O. L. (1986). Methodological investigations into low technology monitoring of atmospheric metal pollution: part 3—the degree of replicability of the metal concentrations. Environmental Pollution Series B, Chemical and Physical, 12(2), 85-109. https://doi.org/10.1016/0143-148X(86)90050-9

Galeano-Páez, C., Brango, H., Pastor-Sierra, K., Coneo-Pretelt, A., Arteaga-Arroyo, G., Peñata-Taborda, A., Espitia-Pérez, P., Ricardo-Caldera, D., Humanez-Álvarez, A., Londoño-Velasco, E., Espinosa-Sáez, R., Diaz-Ponguta, B., da Silva, J., Silva Corrêa, D., & Espitia-Pérez, L. (2024). Genotoxicity and cytotoxicity induced in vitro by airborne particulate matter (PM2.5) from an open-cast coal mining area. Atmosphere, 15(12), 1420. https://doi.org/10.3390/atmos15121420

Garcia, A., Saez, Y., Harris, I., Huang, X., & Collado, E. (2025). Advancements in air quality monitoring: a systematic review of IoT-based air quality monitoring and AI technologies. Artificial Intelligence Review, 58(9), 275. https://doi.org/10.1007/s10462-025-11277-9‏

Hamutoolu, R., Derici, M. K., Aras, E. S., Aslan, A., & Cansaran-Duman, D. (2020). The physiological and DNA damage response of the lichen Hypogymnia physodes to UV and heavy metal stress. Applied Ecology and Environmental Research, 18(2), 2315-2338.

Honegger, R., Zippler, U., Gansner, H., & Scherrer, S. (2004). Mating systems in the genus Xanthoria (lichen-forming ascomycetes). Mycol. Res., 108(Pt 5), 480-488.

http://doi.org / 10.1017/s0953756204009682

Jayawardena, U. A., Wickramasinghe, D. D., & Udagama, P. V. (2021). Cytogenotoxicity evaluation of a heavy metal mixture, detected in a polluted urban wetland: Micronucleus and comet induction in the Indian green frog (Euphlyctis hexadactylus) erythrocytes and the Allium cepa bioassay. Chemosphere, 277, 130278. https://doi.org/10.1016/j.chemosphere.2021.130278

Kaya, M., Çavuşoğlu, K., Yalçin, E., et al. (2023). DNA fragmentation and multifaceted toxicity induced by high-dose vanadium exposure determined by the bioindicator Allium test. Scientific Reports, 13, 8493. https://doi.org/10.1038/s41598-023-35783-4

Kang, Y., Aye, L., Ngo, T. D., & Zhou, J. (2022). Performance evaluation of low-cost air quality sensors: A review. Science of The Total Environment, 818, 151769. https://doi.org/10.1016/j.scitotenv.2021.151769

Khelil, R., Khelil, A., Dadamoussa, B., Cabello-Hurtado, F., & Esnault, M. A. (2013). Bio surveillance de la pollution de l'air à l'aide du lichen Xanthoria parietina. PhytoChem & BioSub Journal, 7(2), 41-51.

Kouadria, N., Belhoucine, F., Bouredja, N., Ait Kaci, M., Abismail, Y., & Alioua Berrebba, A. (2020). Bioaccumulation of lead by Xanthoria parietina and Hylocomium splendens, and its effect on some physiological parameters. J. Mater. Environ. Sci, 11, 247-254.

Krjukoviča, V., Balcerbule, Z., Lazarenko, V., Bērtiņš, M., & Vīksna, A. (2021). Lichens (Xanthoria parietina)-Bio-Indicators for Sulphur and Metallic Elements for Pollution Investigation in Riga City. Key Engineering Materials, 903, 106-110. https://doi.org/10.4028/www.scientific.net/KEM.903.106. ‏

Luby, S. P., Biswas, D., Gurley, E. S., & Hossain, I. (2015). Why highly polluting methods are used to manufacture bricks in Bangladesh. Energy Sustain. Dev., 28, 68–74. https://doi.org/10.1016/j.esd.2015.07.003

Misra, P., Imasu, R., Hayashida, S., Arbain, A. A., Avtar, R., & Takeuchi, W. (2020). Mapping Brick Kilns to Support Environmental Impact Studies around Delhi Using Sentinel-2. ISPRS International Journal of Geo-Information, 9(9), 544. https://doi.org/10.3390/ijgi9090544

Møller, P., Danielsen, P. H., Jantzen, K., Roursgaard, M., & Loft, S. (2013). Oxidatively damaged DNA in animals exposed to particles. Critical Reviews in Toxicology, 43(2), 96–118. https://doi.org/10.3109/10408444.2012.756456

Morillas, L., Roales, J., Cruz, C., & Munzi, S. (2022). Non-toxic increases in nitrogen availability can improve the ability of the soil lichen Cladonia rangiferina to cope with environmental changes. J. Fungi, 8, 333. https://doi.org/10.3390/jof8020333.

Morillas L. (2024). Lichens as Bioindicators of Global Change Drivers. Journal of fungi (Basel, Switzerland), 10(1), 46 .https://doi.org/10.3390/jof10010046.

Musilova, P., Kadlcikova, D., Hradska, H., Vozdova, M., Selingerova, I., Cernohorska, H., ... & Rubes, J. (2023). Chromosome damage in regions with different levels of air pollution. Environmental and Molecular Mutagenesis, 64(6), 326-334. https://doi.org/10.1002/em.22562

Nassar, Y., Aissa, K., & Alsadi, S. (2017). Air pollution sources in Libya. Research & Reviews: Journal of Ecology and Environmental Sciences, 5, 63-79. https://scholar.ptuk.edu.ps/handle/123456789/213

Petrova, S., Velcheva, I., & Nikolov, B. (2024). Nature-based solutions to reduce air pollution: a case study from Plovdiv, Bulgaria, Using trees, herbs, mosses and lichens. Forests, 15(6), 928. https://doi.org/10.3390/f15060928

Sevik, H., Cetin, M., Ozel, H. B., & Pinar, B. (2019). Changes in Pb, Cr, and Cu concentrations in some bioindicators depending on traffic density on the basis of species and organs. Applied Ecology and Environmental Research, 17(6), 12843–12857. https://doi.org/10.15666/aeer/1706_1284312857.

Simmons, S. O., Fan, C. Y., Yeoman, K., Wakefield, J., & Ramabhadran, R. (2011). NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent. Current chemical genomics, 5, 1–12. https://doi.org/10.2174/187539730110501000.

Šrut, M., Štambuk, A., & Klobučar, G. I. (2013). What is Comet assay not telling us: AFLP reveals wider aspects of genotoxicity. Toxicology in vitro: an international journal published in association with BIBRA, 27(4), 1226–1232. https://doi.org/10.1016/j.tiv.2013.02.007

Takano, A. P. C., Rybak, J., & Veras, M. M. (2024). Bioindicators and human biomarkers as alternative approaches for cost-effective assessment of air pollution exposure. Frontiers in Environmental Engineering, 3, 1346863.‏ https://doi.org/10.3389/fenve.2024.1346863.

Vardar, Ç., Basaran, E., Cansaran-Duman, D., & Aras, S. (2014). Air-quality biomonitoring: Assessment of genotoxicity of air pollution in the Province of Kayseri (Central Anatolia) by use of the lichen Pseudevernia furfuracea (L.) Zopf and amplified fragment-length polymorphism markers. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 759, 43-50. https://doi.org/10.1016/j.mrgentox.2013.09.011.

Verma, N., Pink, M., Rettenmeier, A. W., & Schmitz-Spanke, S. (2012). Review on proteomic analyses of benzo[a]pyrene toxicity. Proteomics, 12(11), 1731–1755. https://doi.org/10.1002/pmic.201100466.

World Health Organization. (2023). Overview of methods to assess population exposure to ambient air pollution. Geneva: World Health Organization. Available at: https://iris.who.int/bitstream/handle/10665/373014/9789240073494-eng.pdf?sequence=1 (Accessed January 6, 2024).

Downloads

Published

31-12-2025

How to Cite

Assessment of DNA Damage in Lichens Caused by Air Pollution in Misurata Using Rapd-PCR. (2025). Libyan Journal of Ecological & Environmental Sciences and Technology, 7(3), 26-34. https://doi.org/10.63359/qazysq27