Evaluation of Physicochemical Properties in Drinking Ground Water in Wadi Fira State, Republic of Chad

Authors

  • Abdalla Gobara University of Dalanj
  • Djalal Fadoul Mohamed
  • Madena Komi
  • Mohammed Bahreldin
  • Slaheldeen Homida
  • Awad Salim
  • Asha wady

DOI:

https://doi.org/10.63359/2gaxpf06

Keywords:

Physicochemical Properties, Groundwater, Wadi Fira

Abstract

Ground water are main sources of drinking in Wadi Fira, Chad, this state was chosen as study area due to the lack of research evidences in the past. The study aimed to evaluate some physicochemical properties of ground water comparing with world health organization and local standards in Chad. Water samples were collected from (35 wells) in different locations of the city by using GPS to locate the coordinates of wells in November 2024, and packaged in polyethylene bottles and carefully stored. The samples were analysed using an Atomic Absorption Spectrometer (AAS), pH Meter, Conductivity meter (E.C), Turbidity meter, EDTA titrimetric methods, flame photometric, the analyses were carried out in national water laboratory, Ndjamena. the following parameters such as: pH meter, Electrical Conductivity (E.C), Turbidity, Total Hardness (T.H), Total Dissolved Salt (T.D.S), and total alkalinity (TA), cations, ( Na+, Mg 2+, K+, Ca 2+, Fe2+) and some anions such as: ( F-, CI-, SO42-, NO3-). The results showed that, pH were in the range (6.65-8.20), Electrical Conductivity (E.C), (111.8-1977) µs/cm, except, sample (S10-S23) were found in the range (4440.0-4650) respectively, these values were higher than guidelines of WHO and OMS, turbidity ranges between (0.0-35) NTU except, samples (S6,S7,S21) were found in the range (117.0,50.2,12.8) respectively, within permissible values WHO, but higher than approved level OMS (≤ 5),Total Dissolved Salt (T.D.S) range between (56.6-924.8) mg/L except samples (S19,S26) showed (2227.6-2334.6) respectively, which their recorded values were higher than permitted standard, Na+ (1.4-44.0) mg/L, K+, (1.5-8.9) mg/L except, samples (S16, S26) were found (24.3,64.0) higher than the acceptable limit to OMS and WHO, Mg2+ (4.9-38.9) mg/L Concentrations of Magnesium all the samples were within allowed range, Ca2+ (32.0-200) mg/L Concentrations of Calcium were within approved range with the exception (S10,S18,S19,S26 and S32) were found (240,216,376.0,394.0 and 280.0) consecutively, were higher than suggested range in OMS ( ≤ 200 ), Fe2+ (0.0-02) mg /L, NH4+ (0.0-1.2) mg/L, except samples (S6,S21) were found (3.5,2.6) were higher than suggested range in OMS (≤ 1,5), F-(0.0-1.4) mg/L, Cl- (3.0-1800) mg/L all samples was within allowed range, NO3- (0.0-0.344) mg/L except S19 was found 53.4 was higher than permissible value, SO42- (1.0-160.0) mg/L, most samples had pH and total solubility values of salt within permissible limits according to drinking water quality guidelines of WHO and OMS, with exception some samples content (Electrical conductivity, Total dissolve solid, potassium ion concentration, ammonium concertation and nitrate) were higher in than the allowed limit of Chad Standards and World Health Organization. From the comparison we conclude that most of the sources are with safe for drinking, some need treatments. Further studies should be conducted to determine the concentrations of heavy metals contamination in the study areas. The study recommends that, officials should obligate the organizations and corodies conducing comprehensive investigation before digging wells.

References

أحمد حسن محمد إبراهيم ، مسعود امحمد الرقيق،2010 ، تقدير بعض العناصر الفلزية في مياه الشرب بجمهورية تشاد بواسطة طيف الامتصاص الذري، مجلة جامعة سبها، العلوم البحثة والتطبيقية المجلد التاسع ، العدد الثاني .

انتصار بوجليدة ،2007، تقييم جودة المياه الجوفية بمنطقة صرما ، المؤتمر العلمي الثالث لجامعة النجع الساطع - ليبيا.

بوبكر العبدلي؛ محمد الدراوي العائب؛ عبد الحميد خليفة الزربي2020،. تقييم جودة المياه الجوفية بمنطقة برسس الجبل الأخضر-ليبيا ، المجلة الليبية لعلوم وتكنولوجيا البيئة-ليبيا. https://doi.org/10.63359/ssdf2109

سحر أمين كاتوت، 2008، المياه، الناشر: دار دجلة ناشرون وموزعون.

سهيل، عبدالرحيم رافع ،2014، تملح المياه بواسطة الكبريتات، ، منشورات جامعة عدن اليمن - ص 28

طالب، محمدين صبري،2003، الدور الحيوي للبوتاسيوم في عمليات الميتابوليزم ، مكتبة القبس العلمية، عمان الارد ن- ص 93

عبد الرزاق مصباح عبد العزيز؛ خيري محمد العماري؛ علي خير صابر ،2019، تقييم جودة المياه الجوفية لأغراض الشرب باستخدام مؤشر جودة المياه في مدينة صرمان، المجلة الليبية لعلوم وتكنولوجيا البيئة، ليبيا. https://doi.org/10.63359/jk74a380

عليان، عاطف؛ الحصادي، وآخرون1994، كيمياء وفيزياء الملوثات البيئية مع طرق الكشف عنها وتأثيراتها البيوطبية. منشورات جامعة قاريونس بنغازي الطبعة الأولى.

قمر، قمر محمد، مهاجر، احمد محمد ،2021 ، تقدير تراكيز بعض الكاتيونات والأيونات الذائبة لمياه الشرب بالدائرة الرابعة لمدينة أنجمينا، المجلة الدولية للبحث العلمي والتنمية المستدامة، المجل د 4،العد د 3 https://doi.org/10.21608/ijsrsd.2021.206884

محمد الكايد 2013، النظام المائي. الناشر: دار الراية. الطبعة الاولى ـالصفحة 321.

Bhattacharya T., Chakraborty S. and Tuck Neha,2012, Physicochemical Characterization of ground water of Anand district, Gujarat, India, Research Journal of Environment Sciences, Vol. 1(1), 28-33. www.isca.in

Block, J. A. 1977. Water Pollution Technology. New York

Galitskaya, I. V.; Mohan, K. R.; Krishna, A. K.; Batrak, G. I.; Eremina, O. N.; Putilina, V. S.; Yuganova, T. I.2017, Assessment of soil and groundwater contamination by heavy metals and metalloids in Russian and Indian megacities. Procedia Earth Planet. Sci., 17, 674–677. https://doi.org/10.1016/j.proeps.2016.12.180

Gleick, P. H., & Schneider, S. 1996. Encyclopedia of climate and weather. Water Resources, 2, 817-823.

Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B. B.; Beeregowda, K. N. 2014, Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol, 7, 60–72. https://doi.org/10.2478/intox-2014-0009

Liptrot,G.F. 1983 modern inorganic chemistry 4th.ed(modern chemistry series), ISBN 0 7135-1357 8 292-293.

Mahananda M.R., Mohanty B.P. and Behera N.R., 2010, Physicochemical analysis of surface and groundwater of Bargarh district, Orissa, India, Intl. J. Res. Rev. App. Sci., 2(3), 284-295

Mangale Sapana M., Chonde Sonal G. and Raut P. D. 2012, Use of Moringa Oleifera (Drumstick) seed as Natural Absorbent and an Antimicrobial agent for Ground water Treatment, Res. J. Recent Sci., 1(3), 31-40

Sehar S., Iffat N., Ali M. I. and Ahmed S., 2011, Monitoring of Physico-Chemical and Microbiological Analysis of Under Ground Water Samples of District Kallar Syedan, Rawalpindi-Pakistan, Res. J. Chem. Sc., 1(8), 24-30.www.isca.in

WHO, 2004, Iron in drinking-water, background document for preparation of WHO Guideline for drinking water quality. Geneva. World Health Organization. (WHO/SDE/WSH/03.04/88).

WHO; 2004, Copper in drinking-water, background document for preparation of WHO Guideline for drinking water quality. Geneva. World Health Organization. (WHO/SDE/WSH/03.04/88).

WHO; 2012, Guidelines for Drinking Water Quality, Volume2: Recommendations WHO, Geneva.

World Health Organization,1996, Geneva, Guidelines for drinking-water quality, Health criteria and other supporting information, 2nd ed. Vol. 2. https://doi.org/10.1002/9780470172971.app2

Downloads

Published

31-12-2025

How to Cite

Evaluation of Physicochemical Properties in Drinking Ground Water in Wadi Fira State, Republic of Chad. (2025). Libyan Journal of Ecological & Environmental Sciences and Technology, 7(3), 1-9. https://doi.org/10.63359/2gaxpf06