تحديد التأثيرات البيولوجية والهيستوباثولوجية والسمية الجينية لبعض المبيدات على سمك السلمون
DOI:
https://doi.org/10.63359/80mrq174الكلمات المفتاحية:
المبيدات الحشريه، سمك السلمون المرقط، التأثيرات البيولوجية، الحمض النووي، الهستولوجيالملخص
تؤثر المبيدات المستخدمة في الحقول الزراعية على الكائنات غير المستهدفة في البيئة حيث انها تقتل الكائنات البحرية أو يكون لها تأثيرات سلبية على الأعضاء الحيوية لتلك الكائنات بعد دخولها البيئة المائية. لذلك كان الغرض من هذه الدراسة هو التحقيق في التأثيرات الكيميائية الحيوية والنسيجية المرضية وتأثيرات سمية الجينية في سمك السلمون المرقط (Oncorhynchus mykiss)، وقد تم ذلك عن طريق تعريض السمك لتركيزات أقل من قاتلة من مواد بيريبروكسيفين وإيمازاموكس وهيميكسازول لمدة 96 ساعة. وقد تم التحقيق في المعايير الكيميائية الحيوية من عينات البلازما، والتقييم النسيجي المرضي من الخياشيم والكبد والكلى والطحال، وتلف الحمض النووي من خلايا الدم في المدة 48 و96 ساعة. أظهرت النتائج اختلافات كبيرة في مستويات الكوليسترول والفوسفاتيز القلوية والدهون الثلاثية والبروتين الكلي للأسماك المعرضة لتركيزات أعلى من بيريبروكسيفين مقارنة بمجموعة الشاهذ (P <0.05). اما فيما يتعلق بالتأثيرات النسيجية المرضية للتركيزات دون القاتلة من المبيدات الحشرية، فقد تبين أن التأثيرات الضارة على اسماك السلمون زادت اعتمادًا على الوقت وزيادة التركيز. وقد تم الكشف عن التنكس النووي والنخر في الخلايا البرنشيمية بمستوى مفرط في الطحال. كما تم الكشف عن كسر خيوط الحمض النووي في خلايا الدم للأسماك اعتمادًا على التركيز والوقت. وكان تلف الحمض النووي أعلى في الأسماك المعرضة لتركيزات عالية من بيربروكسيفين، تليها إيمازاموكس والهايمكسازول. وقد لوحظ أن التأثيرات الكيميائية الحيوية والهستوباثولوجية والسمية الجينية للمبيدات الحشرية زادت اعتمادًا على التركيز والوقت. لذلك، أثناء استخدام هذه الأنواع من المبيدات يجب أن نكون أكثر حرصًا على حماية البيئة المائية.
المراجع
Abdel-Tawwab, M., & Hamed, H. S. (2018). Effect of bisphenol A toxicity on growth performance, biochemical variables, and oxidative stress biomarkers of Nile tilapia, Oreochromis niloticus (L.). Journal of Applied Ichthyology, 34(5), 1117–1125. https://doi.org/10.1111/jai.13763
Ahmed, Md. K., Habibullah-Al-Mamun, Md., Parvin, E., Akter, M. S., & Khan, M. S. (2013). Arsenic induced toxicity and histopathological changes in gill and liver tissue of freshwater fish, tilapia (Oreochromis mossambicus). Experimental and Toxicologic Pathology, 65(6), 903–909. https://doi.org/10.1016/j.etp.2013.01.003
Akar F., N. G. ,. (2024). Determining Genotoxic Effect of Thiamethoxam in Rainbow Trout (Oncorhynchus Mykiss) by Micronucleus Test. INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY (IJERT), 13(04).
Akram R., G. A. , H. R. , et al. (2022). Hematological, serum biochemistry, histopathological and mutagenic impacts of triclosan on fish (bighead carp). Agrobiological Records., 07, 18–28.
Akter, R., Pervin, M. A., Jahan, H., Rakhi, S. F., Reza, A. H. M. M., & Hossain, Z. (2020). Toxic effects of an organophosphate pesticide, envoy 50 SC on the histopathological, hematological, and brain acetylcholinesterase activities in stinging catfish (Heteropneustes fossilis). The Journal of Basic and Applied Zoology, 81(1), 47. https://doi.org/10.1186/s41936-020-00184-w
Albano, M., Panarello, G., Di Paola, D., D’Angelo, G., Granata, A., Savoca, S., & Capillo, G. (2021). The mauve stinger Pelagia noctiluca (Cnidaria, Scyphozoa) plastics contamination, the Strait of Messina case. International Journal of Environmental Studies, 78(6), 977–982. https://doi.org/10.1080/00207233.2021.1893489
Albaseer, S. S. (2019). Factors controlling the fate of pyrethroids residues during post-harvest processing of raw agricultural crops: An overview. Food Chemistry, 295, 58–63. https://doi.org/10.1016/j.foodchem.2019.05.109
Al-Emran, M., Hasan, N. A., Khan, M. P., Islam, S. M. M., Bashar, A., Zulfahmi, I., Shahjahan, M., & Sumon, K. A. (2022). Alterations in hematological parameters and the structure of peripheral erythrocytes in Nile tilapia (Oreochromis niloticus) exposed to profenofos. Environmental Science and Pollution Research, 29(19), 29049–29061. https://doi.org/10.1007/s11356-021-17972-8
Altinok, I., Capkin, E., & Boran, H. (2012). Mutagenic, genotoxic and enzyme inhibitory effects of carbosulfan in rainbow trout Oncorhynchus mykiss. Pesticide Biochemistry and Physiology, 102(1), 61–67. https://doi.org/10.1016/j.pestbp.2011.10.011
Aparicio, V. C., De Gerónimo, E., Marino, D., Primost, J., Carriquiriborde, P., & Costa, J. L. (2013). Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere, 93(9), 1866–1873. https://doi.org/10.1016/j.chemosphere.2013.06.041
Asad, M. A. U., Lavoie, M., Song, H., Jin, Y., Fu, Z., & Qian, H. (2017). Interaction of chiral herbicides with soil microorganisms, algae and vascular plants. Science of The Total Environment, 580, 1287–1299. https://doi.org/10.1016/j.scitotenv.2016.12.092
Barhoumi, S., Messaoudi, I., Gagné, F., & Kerkeni, A. (2012). Spatial and seasonal variability of some biomarkers in Salaria basilisca (Pisces: Blennidae): Implication for biomonitoring in Tunisian coasts. Ecological Indicators, 14(1), 222–228. https://doi.org/10.1016/j.ecolind.2011.06.025
Beyer, J., Petersen, K., Song, Y., Ruus, A., Grung, M., Bakke, T., & Tollefsen, K. E. (2014). Environmental risk assessment of combined effects in aquatic ecotoxicology: A discussion paper. Marine Environmental Research, 96, 81–91. https://doi.org/10.1016/j.marenvres.2013.10.008
Devillers, J. (2020). Fate and ecotoxicological effects of pyriproxyfen in aquatic ecosystems. Environmental Science and Pollution Research, 27(14), 16052–16068. https://doi.org/10.1007/s11356-020-08345-8
El Megid, Afaf. A., Abd Al Fatah, M. E., El Asely, A., El Senosi, Y., Moustafa, M. M. A., & Dawood, M. A. O. (2020). Impact of pyrethroids and organochlorine pesticides residue on IGF-1 and CYP1A genes expression and muscle protein patterns of cultured Mugil capito. Ecotoxicology and Environmental Safety, 188, 109876. https://doi.org/10.1016/j.ecoenv.2019.109876
Fan, Y., Miao, W., Lai, K., Huang, W., Song, R., & Li, Q. X. (2018). Developmental toxicity and inhibition of the fungicide hymexazol to melanin biosynthesis in zebrafish embryos. Pesticide Biochemistry and Physiology, 147, 139–144. https://doi.org/10.1016/j.pestbp.2017.10.007
Ghaffar, A. (2020). Dose and Time-Related Pathological and Genotoxic Studies on Thiamethoxam in Fresh Water Fish (Labeo rohita) in Pakistan. Pakistan Veterinary Journal, 40(02), 151–156. https://doi.org/10.29261/pakvetj/2020.002
Hasan, J., Dristy, E. Y., Anjumanara, Mondal, P., Hoque, M. S., Sumon, K. A., Hossain, M. A. R., & Shahjahan, M. (2023). Dried fish more prone to microplastics contamination over fresh fish – Higher potential of trophic transfer to human body. Ecotoxicology and Environmental Safety, 250, 114510. https://doi.org/10.1016/j.ecoenv.2023.114510
Hasan, J., Islam, S. M. M., Alam, M. S., Johnson, D., Belton, B., Hossain, M. A. R., & Shahjahan, M. (2022). Presence of microplastics in two common dried marine fish species from Bangladesh. Marine Pollution Bulletin, 176, 113430. https://doi.org/10.1016/j.marpolbul.2022.113430
Hasan, M., Sumon, K. A., Siddiquee, M. A. M., Bhandari, R. K., Prodhan, M. D. H., & Rashid, H. (2022). Thiamethoxam affects the developmental stages of banded gourami (Trichogaster fasciata). Toxicology Reports, 9, 1233–1239. https://doi.org/10.1016/j.toxrep.2022.05.017
Hasan, Md. M., Uddin, Md. H., Islam, Md. J., Biswas, S., Sumon, K. A., Prodhan, M. D. H., & Rashid, H. (2022). Histopathological Alterations in Liver and Kidney Tissues of Banded Gourami (Trichogaster fasciata) Exposed to Thiamethoxam. Aquaculture Studies, 23(01). https://doi.org/10.4194/AQUAST939
Hedayati, A., & Tarkhani, R. (2014). Hematological and gill histopathological changes in iridescent shark, Pangasius hypophthalmus (Sauvage, 1878) exposed to sublethal diazinon and deltamethrin concentrations. Fish Physiology and Biochemistry, 40(3), 715–720. https://doi.org/10.1007/s10695-013-9878-3
Islam, M. T., Mostakim, G. M., Azom, M. G., Rahman, U. O., Khan, M. M., Quader Khan, M. G., & Islam, M. S. (2022). Effect of an amalgamated antibiotic and its connection to cyto-genotoxicity and histo-architectural malformations in stinging catfish. Emerging Contaminants, 8, 381–390. https://doi.org/10.1016/j.emcon.2022.09.001
Islam, S. M., Khan, M. M., Moniruzzaman, M., Mostakim, G. M., & Rahman, M. K. (2019). Recuperation patterns in fish with reference to recovery of erythrocytes in Barbonymus gonionotus disordered by an organophosphate. International Journal of Environmental Science and Technology, 16(11), 7535–7544. https://doi.org/10.1007/s13762-019-02425-0
KEKİLLİOĞLU A., B. Z. (2020). PESTICIDES AND THE INVESTIGATION OF THEIR EFFECTS ON BEES. Ejons International Journal on Mathematic, Engineering and Natural Sciences, 4(13), 26–44.
Li, R., Luo, C., Qiu, J., Li, Y., Zhang, H., & Tan, H. (2022). Metabolomic and transcriptomic investigation of the mechanism involved in enantioselective toxicity of imazamox in Lemna minor. Journal of Hazardous Materials, 425, 127818. https://doi.org/10.1016/j.jhazmat.2021.127818
Li, X., Naseem, S., Hussain, R., Ghaffar, A., Li, K., & Khan, A. (2022). Evaluation of DNA Damage, Biomarkers of Oxidative Stress, and Status of Antioxidant Enzymes in Freshwater Fish (Labeo rohita) Exposed to Pyriproxyfen. Oxidative Medicine and Cellular Longevity, 2022, 1–13. https://doi.org/10.1155/2022/5859266
Majumder, R., & Kaviraj, A. (2019). Acute and sublethal effects of organophosphate insecticide chlorpyrifos on freshwater fish Oreochromis niloticus. Drug and Chemical Toxicology, 42(5), 487–495. https://doi.org/10.1080/01480545.2018.1425425
Mohammod Mostakim, G., Zahangir, Md. M., Monir Mishu, M., Rahman, Md. K., & Islam, M. S. (2015). Alteration of Blood Parameters and Histoarchitecture of Liver and Kidney of Silver Barb after Chronic Exposure to Quinalphos. Journal of Toxicology, 2015, 1–8. https://doi.org/10.1155/2015/415984
Moura, J. A. S., & Souza-Santos, L. P. (2020). Environmental risk assessment (ERA) of pyriproxyfen in non-target aquatic organisms. Aquatic Toxicology, 222, 105448. https://doi.org/10.1016/j.aquatox.2020.105448
Nur G., D. H. A. , K. E. (2021). Preservation of vitamin-E against nephrotoxic effect induced by subacute Dichlorvos application. Fresenius Environmental Bulletin, 30(07), 8651–8659.
Poorbagher, H., Ghaffari Farsani, H., & Farahmand, H. (2018). A method to quantify genotoxicity of malathion in rainbow trout using the weighted averaging. Toxicology Mechanisms and Methods, 28(8), 607–614. https://doi.org/10.1080/15376516.2018.1480079
R.A. Bhat, M. A. M. M. A. D. N. M. J. I. A. B. G. H. D. (2017). Current status of nutrient load in dal lake of Kashmir Himalaya. J. Pharmacogn. Phytochem., 06, 165–169.
Rohani, M. F. (2023). Pesticides toxicity in fish: Histopathological and hemato-biochemical aspects – A review. Emerging Contaminants, 9(3), 100234. https://doi.org/10.1016/j.emcon.2023.100234
Santana, M. S., Sandrini-Neto, L., Di Domenico, M., & Prodocimo, M. M. (2021). Pesticide effects on fish cholinesterase variability and mean activity: A meta-analytic review. Science of The Total Environment, 757, 143829. https://doi.org/10.1016/j.scitotenv.2020.143829
Shahjahan, M., Islam, M. J., Hossain, M. T., Mishu, M. A., Hasan, J., & Brown, C. (2022). Blood biomarkers as diagnostic tools: An overview of climate-driven stress responses in fish. Science of The Total Environment, 843, 156910. https://doi.org/10.1016/j.scitotenv.2022.156910
Shahjahan, M., Islam, S. M., Bablee, A. L., Siddik, M. A. B., & Fotedar, R. (2021). Sumithion usage in aquaculture: benefit or forfeit? Reviews in Aquaculture, 13(4), 2092–2111. https://doi.org/10.1111/raq.12560
Shahjahan, Md., Rahman, M. S., Islam, S. M. M., Uddin, Md. H., & Al-Emran, Md. (2019). Increase in water temperature increases acute toxicity of sumithion causing nuclear and cellular abnormalities in peripheral erythrocytes of zebrafish Danio rerio. Environmental Science and Pollution Research, 26(36), 36903–36912. https://doi.org/10.1007/s11356-019-06886-1
Sikorski, Ł., Baciak, M., Bęś, A., & Adomas, B. (2019). The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species. Aquatic Toxicology, 209, 70–80. https://doi.org/10.1016/j.aquatox.2019.01.021
Singh, N. N., & Srivastava, A. K. (2010). Haematological parameters as bioindicators of insecticide exposure in teleosts. Ecotoxicology, 19(5), 838–854. https://doi.org/10.1007/s10646-010-0465-4
Tominaga, F. K., Brito, R. S., Oliveira do Nascimento, J., Giannocco, G., Monteiro de Barros Maciel, R., Kummrow, F., & Pereira, B. F. (2025). Pyriproxyfen toxicity to fish and crustaceans: a literature review. Environmental Research, 121295. https://doi.org/10.1016/j.envres.2025.121295
Uddin, Md. H., Ali, Md. H., Sumon, K. A., Shahjahan, Md., & Rashid, H. (2022). Effects of Pyrethroid Pesticide Cypermethrin on the Gonad and Hemato-biochemical Parameters of Female Gangetic Mystus (Mystus cavasius). Aquaculture Studies, 22(3). https://doi.org/10.4194/AQUAST819
Vali, S., Majidiyan, N., Azadikhah, D., Varcheh, M., Tresnakova, N., & Faggio, C. (2022). Effects of Diazinon on the Survival, Blood Parameters, Gills, and Liver of Grass Carp (Ctenopharyngodon idella Valenciennes, 1844; Teleostei: Cyprinidae). Water, 14(9), 1357. https://doi.org/10.3390/w14091357
Weeks Santos, S., Cachot, J., Cormier, B., Mazzella, N., Gourves, P.-Y., Clérandeau, C., Morin, B., & Gonzalez, P. (2021). Environmentally Relevant Mixture of Pesticides Affect Mobility and DNA Integrity of Early Life Stages of Rainbow Trout (Oncorhynchus mykiss). Toxics, 9(8), 174. https://doi.org/10.3390/toxics9080174
Yang, G., Lv, L., Di, S., Li, X., Weng, H., Wang, X., & Wang, Y. (2021). Combined toxic impacts of thiamethoxam and four pesticides on the rare minnow (Gobiocypris rarus). Environmental Science and Pollution Research, 28(5), 5407–5416. https://doi.org/10.1007/s11356-020-10883-0
التنزيلات
منشور
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2025 المجلة الليبية لعلوم وتكنولوجيا البيئة

هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial 4.0 International License.





