The Biological, Histopathological and Genotoxic Effects of some Pesticides on Rainbow Trout Oncorhynchus mykiss

Authors

  • Mabrouka E. R. Saad جامعة كاستامونو كاستامونو تركيا

DOI:

https://doi.org/10.63359/80mrq174

Keywords:

Trout, Pesticides, Biochemical effect, Histopathology, DNA damage

Abstract

It is known that pesticides used in agricultural fields affect non-target organisms in the environment as they kill marine organisms or have negative effects on the vital organs of these organisms after entering the aquatic environment. Therefore, the aim of this study was to investigate the biochemical, histopathological, and genotoxic effects in trout (Oncorhynchus mykiss), and this was done by exposing the fish to sublethal concentrations of pyriproxyfen, imazamox, and hemixazole for 96 hours. Biochemical parameters of plasma samples, histopathological evaluation of gills, liver, kidneys, and spleen, and DNA damage of blood cells were investigated at 48 and 96 hours. The results showed that the levels of cholesterol, alkaline phosphatase, triglycerides, and total protein of fish exposed to higher concentrations of pyriproxyfen showed significant differences compared to the control group (P < 0.05). Regarding the histopathological effects of sublethal concentrations of pesticides, it was determined that the harmful effects on salmon increased depending on time and increasing concentration. Nuclear degeneration and necrosis in parenchymal cells were detected at an excessive level in the spleen. DNA strand breaks were also detected in the blood cells of fish depending on concentration and time. DNA damage was highest in fish exposed to high concentrations of pyriproxyfen, followed by imazamox and finally hemexazole. In conclusion, it was observed that the biochemical, histopathological, and genotoxic effects of pesticides increased depending on concentration and time. Therefore, during the use of these pesticides, we should be more careful to protect the aquatic environments. 

References

Abdel-Tawwab, M., & Hamed, H. S. (2018). Effect of bisphenol A toxicity on growth performance, biochemical variables, and oxidative stress biomarkers of Nile tilapia, Oreochromis niloticus (L.). Journal of Applied Ichthyology, 34(5), 1117–1125. https://doi.org/10.1111/jai.13763

Ahmed, Md. K., Habibullah-Al-Mamun, Md., Parvin, E., Akter, M. S., & Khan, M. S. (2013). Arsenic induced toxicity and histopathological changes in gill and liver tissue of freshwater fish, tilapia (Oreochromis mossambicus). Experimental and Toxicologic Pathology, 65(6), 903–909. https://doi.org/10.1016/j.etp.2013.01.003

Akar F., N. G. ,. (2024). Determining Genotoxic Effect of Thiamethoxam in Rainbow Trout (Oncorhynchus Mykiss) by Micronucleus Test. INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY (IJERT), 13(04).

Akram R., G. A. , H. R. , et al. (2022). Hematological, serum biochemistry, histopathological and mutagenic impacts of triclosan on fish (bighead carp). Agrobiological Records., 07, 18–28.

Akter, R., Pervin, M. A., Jahan, H., Rakhi, S. F., Reza, A. H. M. M., & Hossain, Z. (2020). Toxic effects of an organophosphate pesticide, envoy 50 SC on the histopathological, hematological, and brain acetylcholinesterase activities in stinging catfish (Heteropneustes fossilis). The Journal of Basic and Applied Zoology, 81(1), 47. https://doi.org/10.1186/s41936-020-00184-w

Albano, M., Panarello, G., Di Paola, D., D’Angelo, G., Granata, A., Savoca, S., & Capillo, G. (2021). The mauve stinger Pelagia noctiluca (Cnidaria, Scyphozoa) plastics contamination, the Strait of Messina case. International Journal of Environmental Studies, 78(6), 977–982. https://doi.org/10.1080/00207233.2021.1893489

Albaseer, S. S. (2019). Factors controlling the fate of pyrethroids residues during post-harvest processing of raw agricultural crops: An overview. Food Chemistry, 295, 58–63. https://doi.org/10.1016/j.foodchem.2019.05.109

Al-Emran, M., Hasan, N. A., Khan, M. P., Islam, S. M. M., Bashar, A., Zulfahmi, I., Shahjahan, M., & Sumon, K. A. (2022). Alterations in hematological parameters and the structure of peripheral erythrocytes in Nile tilapia (Oreochromis niloticus) exposed to profenofos. Environmental Science and Pollution Research, 29(19), 29049–29061. https://doi.org/10.1007/s11356-021-17972-8

Altinok, I., Capkin, E., & Boran, H. (2012). Mutagenic, genotoxic and enzyme inhibitory effects of carbosulfan in rainbow trout Oncorhynchus mykiss. Pesticide Biochemistry and Physiology, 102(1), 61–67. https://doi.org/10.1016/j.pestbp.2011.10.011

Aparicio, V. C., De Gerónimo, E., Marino, D., Primost, J., Carriquiriborde, P., & Costa, J. L. (2013). Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere, 93(9), 1866–1873. https://doi.org/10.1016/j.chemosphere.2013.06.041

Asad, M. A. U., Lavoie, M., Song, H., Jin, Y., Fu, Z., & Qian, H. (2017). Interaction of chiral herbicides with soil microorganisms, algae and vascular plants. Science of The Total Environment, 580, 1287–1299. https://doi.org/10.1016/j.scitotenv.2016.12.092

Barhoumi, S., Messaoudi, I., Gagné, F., & Kerkeni, A. (2012). Spatial and seasonal variability of some biomarkers in Salaria basilisca (Pisces: Blennidae): Implication for biomonitoring in Tunisian coasts. Ecological Indicators, 14(1), 222–228. https://doi.org/10.1016/j.ecolind.2011.06.025

Beyer, J., Petersen, K., Song, Y., Ruus, A., Grung, M., Bakke, T., & Tollefsen, K. E. (2014). Environmental risk assessment of combined effects in aquatic ecotoxicology: A discussion paper. Marine Environmental Research, 96, 81–91. https://doi.org/10.1016/j.marenvres.2013.10.008

Devillers, J. (2020). Fate and ecotoxicological effects of pyriproxyfen in aquatic ecosystems. Environmental Science and Pollution Research, 27(14), 16052–16068. https://doi.org/10.1007/s11356-020-08345-8

El Megid, Afaf. A., Abd Al Fatah, M. E., El Asely, A., El Senosi, Y., Moustafa, M. M. A., & Dawood, M. A. O. (2020). Impact of pyrethroids and organochlorine pesticides residue on IGF-1 and CYP1A genes expression and muscle protein patterns of cultured Mugil capito. Ecotoxicology and Environmental Safety, 188, 109876. https://doi.org/10.1016/j.ecoenv.2019.109876

Fan, Y., Miao, W., Lai, K., Huang, W., Song, R., & Li, Q. X. (2018). Developmental toxicity and inhibition of the fungicide hymexazol to melanin biosynthesis in zebrafish embryos. Pesticide Biochemistry and Physiology, 147, 139–144. https://doi.org/10.1016/j.pestbp.2017.10.007

Ghaffar, A. (2020). Dose and Time-Related Pathological and Genotoxic Studies on Thiamethoxam in Fresh Water Fish (Labeo rohita) in Pakistan. Pakistan Veterinary Journal, 40(02), 151–156. https://doi.org/10.29261/pakvetj/2020.002

Hasan, J., Dristy, E. Y., Anjumanara, Mondal, P., Hoque, M. S., Sumon, K. A., Hossain, M. A. R., & Shahjahan, M. (2023). Dried fish more prone to microplastics contamination over fresh fish – Higher potential of trophic transfer to human body. Ecotoxicology and Environmental Safety, 250, 114510. https://doi.org/10.1016/j.ecoenv.2023.114510

Hasan, J., Islam, S. M. M., Alam, M. S., Johnson, D., Belton, B., Hossain, M. A. R., & Shahjahan, M. (2022). Presence of microplastics in two common dried marine fish species from Bangladesh. Marine Pollution Bulletin, 176, 113430. https://doi.org/10.1016/j.marpolbul.2022.113430

Hasan, M., Sumon, K. A., Siddiquee, M. A. M., Bhandari, R. K., Prodhan, M. D. H., & Rashid, H. (2022). Thiamethoxam affects the developmental stages of banded gourami (Trichogaster fasciata). Toxicology Reports, 9, 1233–1239. https://doi.org/10.1016/j.toxrep.2022.05.017

Hasan, Md. M., Uddin, Md. H., Islam, Md. J., Biswas, S., Sumon, K. A., Prodhan, M. D. H., & Rashid, H. (2022). Histopathological Alterations in Liver and Kidney Tissues of Banded Gourami (Trichogaster fasciata) Exposed to Thiamethoxam. Aquaculture Studies, 23(01). https://doi.org/10.4194/AQUAST939

Hedayati, A., & Tarkhani, R. (2014). Hematological and gill histopathological changes in iridescent shark, Pangasius hypophthalmus (Sauvage, 1878) exposed to sublethal diazinon and deltamethrin concentrations. Fish Physiology and Biochemistry, 40(3), 715–720. https://doi.org/10.1007/s10695-013-9878-3

Islam, M. T., Mostakim, G. M., Azom, M. G., Rahman, U. O., Khan, M. M., Quader Khan, M. G., & Islam, M. S. (2022). Effect of an amalgamated antibiotic and its connection to cyto-genotoxicity and histo-architectural malformations in stinging catfish. Emerging Contaminants, 8, 381–390. https://doi.org/10.1016/j.emcon.2022.09.001

Islam, S. M., Khan, M. M., Moniruzzaman, M., Mostakim, G. M., & Rahman, M. K. (2019). Recuperation patterns in fish with reference to recovery of erythrocytes in Barbonymus gonionotus disordered by an organophosphate. International Journal of Environmental Science and Technology, 16(11), 7535–7544. https://doi.org/10.1007/s13762-019-02425-0

KEKİLLİOĞLU A., B. Z. (2020). PESTICIDES AND THE INVESTIGATION OF THEIR EFFECTS ON BEES. Ejons International Journal on Mathematic, Engineering and Natural Sciences, 4(13), 26–44.

Li, R., Luo, C., Qiu, J., Li, Y., Zhang, H., & Tan, H. (2022). Metabolomic and transcriptomic investigation of the mechanism involved in enantioselective toxicity of imazamox in Lemna minor. Journal of Hazardous Materials, 425, 127818. https://doi.org/10.1016/j.jhazmat.2021.127818

Li, X., Naseem, S., Hussain, R., Ghaffar, A., Li, K., & Khan, A. (2022). Evaluation of DNA Damage, Biomarkers of Oxidative Stress, and Status of Antioxidant Enzymes in Freshwater Fish (Labeo rohita) Exposed to Pyriproxyfen. Oxidative Medicine and Cellular Longevity, 2022, 1–13. https://doi.org/10.1155/2022/5859266

Majumder, R., & Kaviraj, A. (2019). Acute and sublethal effects of organophosphate insecticide chlorpyrifos on freshwater fish Oreochromis niloticus. Drug and Chemical Toxicology, 42(5), 487–495. https://doi.org/10.1080/01480545.2018.1425425

Mohammod Mostakim, G., Zahangir, Md. M., Monir Mishu, M., Rahman, Md. K., & Islam, M. S. (2015). Alteration of Blood Parameters and Histoarchitecture of Liver and Kidney of Silver Barb after Chronic Exposure to Quinalphos. Journal of Toxicology, 2015, 1–8. https://doi.org/10.1155/2015/415984

Moura, J. A. S., & Souza-Santos, L. P. (2020). Environmental risk assessment (ERA) of pyriproxyfen in non-target aquatic organisms. Aquatic Toxicology, 222, 105448. https://doi.org/10.1016/j.aquatox.2020.105448

Nur G., D. H. A. , K. E. (2021). Preservation of vitamin-E against nephrotoxic effect induced by subacute Dichlorvos application. Fresenius Environmental Bulletin, 30(07), 8651–8659.

Poorbagher, H., Ghaffari Farsani, H., & Farahmand, H. (2018). A method to quantify genotoxicity of malathion in rainbow trout using the weighted averaging. Toxicology Mechanisms and Methods, 28(8), 607–614. https://doi.org/10.1080/15376516.2018.1480079

R.A. Bhat, M. A. M. M. A. D. N. M. J. I. A. B. G. H. D. (2017). Current status of nutrient load in dal lake of Kashmir Himalaya. J. Pharmacogn. Phytochem., 06, 165–169.

Rohani, M. F. (2023). Pesticides toxicity in fish: Histopathological and hemato-biochemical aspects – A review. Emerging Contaminants, 9(3), 100234. https://doi.org/10.1016/j.emcon.2023.100234

Santana, M. S., Sandrini-Neto, L., Di Domenico, M., & Prodocimo, M. M. (2021). Pesticide effects on fish cholinesterase variability and mean activity: A meta-analytic review. Science of The Total Environment, 757, 143829. https://doi.org/10.1016/j.scitotenv.2020.143829

Shahjahan, M., Islam, M. J., Hossain, M. T., Mishu, M. A., Hasan, J., & Brown, C. (2022). Blood biomarkers as diagnostic tools: An overview of climate-driven stress responses in fish. Science of The Total Environment, 843, 156910. https://doi.org/10.1016/j.scitotenv.2022.156910

Shahjahan, M., Islam, S. M., Bablee, A. L., Siddik, M. A. B., & Fotedar, R. (2021). Sumithion usage in aquaculture: benefit or forfeit? Reviews in Aquaculture, 13(4), 2092–2111. https://doi.org/10.1111/raq.12560

Shahjahan, Md., Rahman, M. S., Islam, S. M. M., Uddin, Md. H., & Al-Emran, Md. (2019). Increase in water temperature increases acute toxicity of sumithion causing nuclear and cellular abnormalities in peripheral erythrocytes of zebrafish Danio rerio. Environmental Science and Pollution Research, 26(36), 36903–36912. https://doi.org/10.1007/s11356-019-06886-1

Sikorski, Ł., Baciak, M., Bęś, A., & Adomas, B. (2019). The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species. Aquatic Toxicology, 209, 70–80. https://doi.org/10.1016/j.aquatox.2019.01.021

Singh, N. N., & Srivastava, A. K. (2010). Haematological parameters as bioindicators of insecticide exposure in teleosts. Ecotoxicology, 19(5), 838–854. https://doi.org/10.1007/s10646-010-0465-4

Tominaga, F. K., Brito, R. S., Oliveira do Nascimento, J., Giannocco, G., Monteiro de Barros Maciel, R., Kummrow, F., & Pereira, B. F. (2025). Pyriproxyfen toxicity to fish and crustaceans: a literature review. Environmental Research, 121295. https://doi.org/10.1016/j.envres.2025.121295

Uddin, Md. H., Ali, Md. H., Sumon, K. A., Shahjahan, Md., & Rashid, H. (2022). Effects of Pyrethroid Pesticide Cypermethrin on the Gonad and Hemato-biochemical Parameters of Female Gangetic Mystus (Mystus cavasius). Aquaculture Studies, 22(3). https://doi.org/10.4194/AQUAST819

Vali, S., Majidiyan, N., Azadikhah, D., Varcheh, M., Tresnakova, N., & Faggio, C. (2022). Effects of Diazinon on the Survival, Blood Parameters, Gills, and Liver of Grass Carp (Ctenopharyngodon idella Valenciennes, 1844; Teleostei: Cyprinidae). Water, 14(9), 1357. https://doi.org/10.3390/w14091357

Weeks Santos, S., Cachot, J., Cormier, B., Mazzella, N., Gourves, P.-Y., Clérandeau, C., Morin, B., & Gonzalez, P. (2021). Environmentally Relevant Mixture of Pesticides Affect Mobility and DNA Integrity of Early Life Stages of Rainbow Trout (Oncorhynchus mykiss). Toxics, 9(8), 174. https://doi.org/10.3390/toxics9080174

Yang, G., Lv, L., Di, S., Li, X., Weng, H., Wang, X., & Wang, Y. (2021). Combined toxic impacts of thiamethoxam and four pesticides on the rare minnow (Gobiocypris rarus). Environmental Science and Pollution Research, 28(5), 5407–5416. https://doi.org/10.1007/s11356-020-10883-0

Downloads

Published

31-12-2025

How to Cite

The Biological, Histopathological and Genotoxic Effects of some Pesticides on Rainbow Trout Oncorhynchus mykiss. (2025). Libyan Journal of Ecological & Environmental Sciences and Technology, 7(3), A 54- 63. https://doi.org/10.63359/80mrq174